1. Find the relationship between \(e \) and \(l \) such that torsion and bending are of equal importance.

2. Having the part shown in the below figure, come up with the best design (of minimum weight) such that:

 (1) All forces are equally significant (assume sharp interior corners are bad)
 (2) Life - moderate
 (3) Moderate cost (make about 100 parts)
 (4) minimum weight
 (5) Generally small size (~30mm)
 (6) temp. can fluctuate between -10 and 50 degrees
 (7) 100 parts
 (8) Looks not that important
 (9) Cold rolled steel
 (10) High speed
 (11) connecting link
3. Find that the shear stress τ for a circular cross section in transverse shear is:

$$\tau = \frac{4P}{3A},$$

where P is the applied load and A is the cross section area.
4. Find the optimum angle α to minimum weight of the structure given a maximum allowable stress. Hints:
 - Consider the normal stress only
 - Ignore buckling
 - Find $W=f(\alpha)$ and optimize