1. Which of the following statements is correct?

A. \((u_2 - u_1)_A > (u_2 - u_1)_B > (u_2 - u_1)_C\)

B. \((u_2 - u_1)_A = (u_2 - u_1)_C > (u_2 - u_1)_B\)

C. \((u_2 - u_1)_B > (u_2 - u_1)_C\)

D. \((u_2 - u_1)_B = (u_2 - u_1)_A\)

Solution:

Since ‘u’ is a thermodynamic property it is path independent. Hence the change in internal energy following the non-equilibrium path B (indicated by the dotted line) and quasi-equilibrium path A is the same.

Answer: D
2. Which of the following statements is correct?

A. Process C is an isochoric process.
B. Process A is an isothermal process.
C. Process B is a non-equilibrium process.
D. None of the above.

Solution:

During the process C, specific volume ‘v’ changes. Hence it is not isochoric.

The process A is not isothermal since an isothermal process (for an ideal gas) has the shape as shown in the figure.

Since the process B is indicated by dotted line, it must be non-equilibrium in nature.

Answer: C
3. For an ideal gas, which of the following statements is correct?

A. \(T_2 > T_3 \)
B. \(T_2 < T_3 \)
C. \(T_2 = T_3 \)
D. None of the above

Solution:

For an ideal gas,

\[
\frac{P_2 v_2}{T_2} = \frac{P_3 v_3}{T_3}
\]

Since \(P_2 = P_3 \) and \(v_3 > v_2 \) (see above figure),

\(T_2 < T_3 \)

Answer: C
4. Which of the following statements is correct?

A. \(1W_3 > 1W_2 \)
B. \(1W_3 < 1W_2 \)
C. \(1W_3 = 1W_2 \)
D. Not enough information

Solution:

\[
1W_2 = \int_{V_1}^{V_2} PdV = m \int_{v_1}^{v_2} Pdv = (\text{Area under the path } 1 \rightarrow 2) \times m
\]

\[
1W_3 = \int_{V_1}^{V_3} PdV = m \int_{v_1}^{v_3} Pdv = (\text{Area under the path } 1 \rightarrow 3) \times m
\]

Since the area under the path \(1 \rightarrow 3 \) is greater than the area under the path \(1 \rightarrow 2 \),

\(1W_3 > 1W_2 \)

Answer: A
Solution:

First Law: Path $1 \rightarrow 3$

$1Q_3 = 1W_3 + (U_3 - U_1)$

$1Q_3 - 1W_3 = U_3 - U_1 = mc_{v0}(T_3 - T_1)$

(for an ideal gas with constant specific heats)

Also,

$\frac{P_3v_3}{T_3} = \frac{P_1v_1}{T_1}$; and $P_3v_3 = P_1v_1$ along $1 \rightarrow 3$.

Hence $T_3 = T_1$. As a result $(T_3 - T_1) = 0$.

or, $1Q_3 = 1W_3$

Answer: C
6. 10 kg of air (ideal gas with constant specific heats, $C_{p0} = 1.005 \text{ kJ/kg K}$, $C_{v0} = 0.717 \text{ kJ/kg K}$, $R = 0.287 \text{ kJ/kg K}$) is heated in a rigid (closed) tank from 300 K to 600 K.

The change in enthalpy in (kJ) is:

A. 6040
B. 3015
C. 1980
D. None of the above

Solution:

$H_2 - H_1 = m(h_2 - h_1)$

For an ideal gas with constant specific heats,

$(h_2 - h_1) = c_{p0}(T_2 - T_1)$

$H_2 - H_1 = 10 \times 1.005 \times (600 - 300) = 3015 \text{ kJ}$

Answer: B
7. Consider a system containing air in a piston-cylinder configuration shown in the figure. You assume air to be an ideal gas with constant specific heats ($C_p = 1.005 \text{ kJ/kg K}$, $C_v = 0.717 \text{ kJ/kg K}$, $R = 0.287 \text{ kJ/kg K}$). The system is compressed (1 \Rightarrow 2) in an irreversible adiabatic process until the final pressure is 500 kPa and the final temperature is 500K.

The magnitude of work done during the process in (kJ) is:

A. 333
B. 233
C. 133
D. 33

Solution:

For an ideal gas,

$$\frac{P_2 v_2}{T_2} = \frac{P_1 v_1}{T_1}$$

$$v_2 = \frac{P_1 v_1}{T_1} \times \frac{T_2}{P_2} = \frac{100 \times 1 \times 500}{500 \times 300} = 0.333 \text{ m}^3$$

In a non-equilibrium process, the work done is given as,

$$1W_2 = F_{Driving} \times displacement = P_2(v_2 - v_1)$$

$$= 500 \times (0.333 - 1) = -333 \text{ kJ}$$

$$|1W_2| = 333 \text{ kJ}$$

Answer: A
Solution:

For an ideal gas,
\[
\frac{P_2V_2}{T_2} = \frac{P_1V_1}{T_1}
\]

\[P_2 = 4000 \text{ kPa}\]

\[\therefore T_2 = \frac{P_2V_2}{P_1V_1} T_1 = \frac{4000}{2000} \times \frac{0.3}{0.2} \times 600 = 1800 \text{ K}\]

Answer: D
9. Work done in process 1 ==> 2 is:

A. 0.1 MJ
B. 0.2 MJ
C. 0.3 MJ
D. 0.4 MJ

Solution:

\[1W_2 = \int_{V_1}^{V_2} PdV \text{ the area under the process line } 1 \rightarrow 2 \]

\[= \text{the area of the trapezoid} \]

\[= \frac{P_1 + P_2}{2} (V_2 - V_1) \]

\[= \frac{(2000 + 4000)(0.3 - 0.2)}{2} = 300 \text{ kJ} = 0.3 \text{ MJ} \]

Answer: C
10. How much heat, in kJ must be transferred to 10 Kg of air with constant specific heats ($C_{pa} = 1.005$ kJ/kg K, $C_{vo} = 0.717$ kJ/kg K, $R = 0.287$ kJ/kg K), contained in a cylinder-piston system, to increase the temperature from 10 deg C to 230 deg C if the pressure is maintained constant at 100 kPa?

A. 2200
B. 2090
C. 1890
D. 1620

Solution:

The first law for the isobaric process is as follows:

$$1Q_2 = U_2 - U_1 + 1W_2 = m(u_2 - u_1) + 1W_2$$

$$= mc_{vo}(T_2 - T_1) + 1W_2$$

$$1W_2 = \int_{V_1}^{V_2} PdV = P_1((V_2 - V_1)) = P_2V_2 - P_1V_1$$

$$= mRT_2 - mRT_1$$

$$= mR(T_2 - T_1)$$

$$= 10 \times 0.287(230 - 10) = 631 \text{ kJ}$$

$$1Q_2 = mc_{vo}(T_2 - T_1) + 1W_2$$

$$= 10 \times 0.717(230 - 10) + 631 = 2208 \text{ kJ}$$

Answer: A
11. 10 kg air (assume ideal gas with constant specific heats, \(C_{p0} = 1.005 \) kJ/kg K, \(C_v = 0.717 \) kJ/kg K, \(R = 0.287 \) kJ/kg K) contained in a cylinder-piston configuration undergoes a non-equilibrium process due to a fast expansion process resulting from sudden removal of some weights. As a result temperature and pressure fell to 20 deg C and 1 MPa from initial temperature and pressure values of 620 deg C and 10 MPa.

The work done during the process is (in kJ) is:

A. 485
B. 585
C. 685
D. 785

Solution:

In a non-equilibrium process work is given by the expression,

\[1W_2 = F_{Resisting} \times displacement = P_2(V_2 - V_1) \]

\[= P_2V_2 - P_2V_1 = P_2V_2 - \frac{P_2}{P_1}P_1V_1 \]

\[= mRT_2 - \frac{P_2}{P_1} mRT_1 = mR\left(T_2 - \frac{P_2}{P_1}T_1\right) \]

\[= 10 \times 287\left(293.15 - \frac{1}{10} \times 893.15\right) = 585 \text{ kJ} \]

Answer: B
Solution:

In a quazi-equilibrium polytropic process,

\[PV^n = C \quad \text{or} \quad P_2 V_2^n = P_1 V_1^n \]

\(n = 2, \ V_1 = 2 \ \text{m}^3, \ V_2 = 1 \ \text{m}^3 \) and \(P_1 = 100 \ \text{kPa} \)

\[
P_2 = P_1 \left(\frac{V_1}{V_2} \right)^n = 100 \times \left(\frac{2}{1} \right)^2 = 400 \ \text{kPa}
\]

Answer: C
Solution:

\[
\frac{P_2 V_2}{T_2} = \frac{P_1 V_1}{T_1}
\]

Note that \(P_2 \) is known from the previous problem (\(P_2 = 400 \text{ kPa} \)).

\[
T_2 = \frac{P_2 V_2}{P_1 V_1} T_1 = \frac{400}{100} \times \frac{1}{2} \times 300 = 600 \text{ K}
\]

Answer: C
14. Consider a system containing air undergoing a polytropic process with exponent of 2 \((PV^n = C)\). Air is compressed slowly, until the final volume is 1 m\(^3\). You may assume ideal gas behavior with constant specific heats \((C_p = 1.005 \text{ kJ/kg K}, C_v = 0.717 \text{ kJ/kg K}, R = 0.287 \text{ kJ/kg K})\).

The magnitude of work done in the process is:

A. 100 KJ
B. 200 KJ
C. 400 KJ
D. None of the above

Solution:

In a polytropic process work can be expressed as,

\[
1W_2 = \frac{P_2V_2 - P_1V_1}{(1 - n)} = \frac{400 \times 1 - 100 \times 2}{1 - 2} = -200 \text{ kJ}
\]

\[|1W_2| = 200 \text{ kJ}\]

Answer: B