•13–13. The two boxcars A and B have a weight of 20 000 lb and 30 000 lb, respectively. If they coast freely down the incline when the brakes are applied to all the wheels of car A causing it to skid, determine the force in the coupling C between the two cars. The coefficient of kinetic friction between the wheels of A and the tracks is $\mu_k = 0.5$. The wheels of car B are free to roll. Neglect their mass in the calculation. *Suggestion:* Solve the problem by representing single resultant normal forces acting on A and B, respectively.

Car A:

$$+ \sum F_{y} = 0; \qquad N_{A} - 20\ 000\ \cos 5^{\circ} = 0 \qquad N_{A} = 19\ 923.89\ \text{lb}$$
$$+ \mathcal{I}\Sigma F_{x} = ma_{x}; \qquad 0.5(19\ 923.89) - T - 20\ 000\ \sin 5^{\circ} = \left(\frac{20\ 000}{32.2}\right)a \qquad (1)$$

Both cars:

$$+\nearrow \Sigma F_x = ma_x;$$
 0.5(19 923.89) - 50 000 sin 5° = $\left(\frac{50\ 000}{32.2}\right)a$

Solving,

$$a = 3.61 \text{ ft/s}^2$$

 $T = 5.98 \, \text{kip}$

Ans.

*13–16. The man pushes on the 60-lb crate with a force **F**. The force is always directed down at 30° from the horizontal as shown, and its magnitude is increased until the crate begins to slide. Determine the crate's initial acceleration if the coefficient of static friction is $\mu_s = 0.6$ and the coefficient of kinetic friction is $\mu_k = 0.3$.

Force to produce motion:

Since $N = 91.80 \, \text{lb}$,

$$\Rightarrow \Sigma F_x = ma_x; \qquad 63.60 \cos 30^\circ - 0.3(91.80) = \left(\frac{60}{32.2}\right)a a = 14.8 \text{ ft/s}^2$$

•13–33. The 2-lb collar C fits loosely on the smooth shaft. If the spring is unstretched when s = 0 and the collar is given a velocity of 15 ft/s, determine the velocity of the collar when s = 1 ft.

$$F_{s} = kx; \qquad F_{s} = 4\left(\sqrt{1+s^{2}}-1\right)$$

$$\Rightarrow \Sigma F_{x} = ma_{x}; \qquad -4\left(\sqrt{1+s^{2}}-1\right)\left(\frac{s}{\sqrt{1+s^{2}}}\right) = \left(\frac{2}{32.2}\right)\left(v\frac{dv}{ds}\right)$$

$$-\int_{0}^{1} \left(4s \, ds - \frac{4s \, ds}{\sqrt{1+s^{2}}}\right) = \int_{15}^{v} \left(\frac{2}{32.2}\right)v \, dv$$

$$-\left[2s^{2} - 4\sqrt{1+s^{2}}\right]_{0}^{1} = \frac{1}{32.2}\left(v^{2} - 15^{2}\right)$$

 $v = 14.6 \, \text{ft/s}$

15 ft/s

1 ft

4 lb/ft

•13–49. The 2-kg block *B* and 15-kg cylinder *A* are connected to a light cord that passes through a hole in the center of the smooth table. If the block travels along a circular path of radius r = 1.5 m, determine the speed of the block.

Free-Body Diagram: The free-body diagram of block *B* is shown in Fig. (a). The tension in the cord is equal to the weight of cylinder *A*, i.e., T = 15(9.81)N = 147.15N. Here, \mathbf{a}_n must be directed towards the center of the circular path (positive *n* axis).

Equations of Motion: Realizing that $a_n = \frac{v^2}{r} = \frac{v^2}{1.5}$ and referring to Fig. (a),

$$\Sigma F_n = ma_n;$$
 147.15 = $2\left(\frac{v^2}{1.5}\right)$

$$v = 10.5 \text{ m/s}$$

13–51. At the instant shown, the radius of curvature of the vertical trajectory of the 50-kg projectile is $\rho = 200 \text{ m}$. Determine the speed of the projectile at this instant.

Free-Body Diagram: The free-body diagram of the projectile is shown in Fig. (a). Here, \mathbf{a}_n must be directed towards the center of curvature of the trajectory (positive *n* axis).

Equations of Motion: Here, $a_n = \frac{v^2}{\rho} = \frac{v^2}{200}$. By referring to Fig. (a),

$$\Sigma + \Sigma F_n = ma_n;$$
 $50(9.81)\cos 30^\circ = 50\left(\frac{v^2}{200}\right)$

v = 41.2 m/s

13–62. The ball has a mass of 30 kg and a speed v = 4 m/s at the instant it is at its lowest point, $\theta = 0^{\circ}$. Determine the tension in the cord and the rate at which the ball's speed is decreasing at the instant $\theta = 20^{\circ}$. Neglect the size of the ball.

$$+\nabla \Sigma F_n = ma_n; \qquad T - 30(9.81)\cos\theta = 30\left(\frac{v^2}{4}\right)$$
$$+ \nearrow \Sigma F_t = ma_t; \qquad -30(9.81)\sin\theta = 30a_t$$
$$a_t = -9.81\sin\theta$$

 $a_t ds = v dv$ Since $ds = 4 d\theta$, then

$$-9.81 \int_{0}^{\theta} \sin \theta (4 d\theta) = \int_{4}^{v} v \, dv$$

$$9.81(4) \cos \theta \Big|_{0}^{\theta} = \frac{1}{2} (v)^{2} - \frac{1}{2} (4)^{2}$$

$$39.24(\cos \theta - 1) + 8 = \frac{1}{2} v^{2}$$

At $\theta = 20^{\circ}$
 $v = 3.357 \text{ m/s}$

$$a_t = -3.36 \text{ m/s}^2 = 3.36 \text{ m/s}^2 \checkmark$$

T = 361 N

13–67. If the coefficient of static friction between the tires and the road surface is $\mu_s = 0.25$, determine the maximum speed of the 1.5-Mg car without causing it to slide when it travels on the curve. Neglect the size of the car.

Free-Body Diagram: The frictional force \mathbf{F}_f developed between the tires and the road surface and \mathbf{a}_n must be directed towards the center of curvature (positive *n* axis) as indicated on the free-body diagram of the car, Fig. (a).

Equations of Motion: Realizing that $a_n = \frac{v^2}{\rho} = \frac{v^2}{200}$ and referring to Fig. (a),

$$+\Sigma F_n = ma_n;$$
 $F_f = 1500 \left(\frac{v^2}{200} \right) = 7.5v^2$

The normal reaction acting on the car is equal to the weight of the car, i.e., N = 1500(9.81) = 14715 N. When the car is on the verge of sliding,

$$F_f = \mu_s N$$

7.5 $v^2 = 0.25(14715)$
 $v = 22.1 \text{ m/s}$

Ans.

 $-\rho = 200 \,\mathrm{m}$ (a) **13–94.** If the position of the 3-kg collar *C* on the smooth rod *AB* is held at r = 720 mm, determine the constant angular velocity $\dot{\theta}$ at which the mechanism is rotating about the vertical axis. The spring has an unstretched length of 400 mm. Neglect the mass of the rod and the size of the collar.

Free-Body Diagram: The free-body diagram of the collar is shown in Fig. (a). The force in the spring is given by $F_{\rm sp} = ks = 200 \left(\sqrt{0.72^2 + 0.3^2} - 0.4\right) = 76$ N. Here, \mathbf{a}_r is assumed to be directed towards the positive *r* axis.

Equations of Motion: By referring to Fig. (a),

$$\pm \Sigma F_r = ma_r;$$
 $-76\left(\frac{12}{13}\right) = 3a_r$ $a_r = -23.38 \text{ m/s}^2$

Kinematics: Since r = 0.72 m is constant, $\dot{r} = \ddot{r} = 0$.

$$a_r = \ddot{r} - r\dot{\theta}^2$$

-23.38 = 0 - 0.72 $\dot{\theta}^2$
 $\dot{\theta} = 5.70 \text{ rad/s}$

251

13–95. The mechanism is rotating about the vertical axis with a constant angular velocity of $\dot{\theta} = 6 \text{ rad/s}$. If rod *AB* is smooth, determine the constant position *r* of the 3-kg collar *C*. The spring has an unstretched length of 400 mm. Neglect the mass of the rod and the size of the collar.

Free-Body Diagram: The free-body diagram of the collar is shown in Fig. (a). The force in the spring is given by $F_{\rm sp} = ks = 200 \left(\sqrt{r^2 + 0.3^2} - 0.4\right)$. Here, \mathbf{a}_r is assumed to be directed towards the positive *r* axis.

Equations of Motion: By referring to Fig. (a),

$$\pm \Sigma F_r = ma_r; \qquad -200 \left(\sqrt{r^2 + 0.3^2} - 0.4\right) \cos \alpha = 3a_r$$
 (1)

However, from the geometry shown in Fig. (b),

$$\cos\alpha = \frac{r}{\sqrt{r^2 + 0.3^2}}$$

Thus, Eq. (1) can be rewritten as

$$-200\left(r - \frac{0.4r}{\sqrt{r^2 + 0.3^2}}\right) = 3a_r$$
 (2)

Kinematics: Since *r* is constant, $\dot{r} = \ddot{r} = 0$.

$$a_r = \ddot{r} - r\dot{\theta}^2 = -r(6^2) \tag{3}$$

Substituting Eq. (3) into Eq. (2) and solving,

$$r = 0.8162 \text{ m} = 816 \text{ mm}$$

•13–97. The 0.75-lb smooth can is guided along the circular path using the arm guide. If the arm has an angular velocity $\dot{\theta} = 2$ rad/s and an angular acceleration $\ddot{\theta} = 0.4$ rad/s² at the instant $\theta = 30^{\circ}$, determine the force of the guide on the can. Motion occurs in the *horizontal plane*.

$$r = \cos \theta |_{\theta=30^{\circ}} = 0.8660 \text{ ft}$$

$$\dot{r} = -\sin \theta \dot{\theta} |_{\theta=30^{\circ}} = -1.00 \text{ ft/s}$$

$$\ddot{r} = -(\cos \theta \dot{\theta}^2 + \sin \theta \ddot{\theta}) |_{\theta=30^{\circ}} = -3.664 \text{ ft/s}^2$$

Using the above time derivative, we obtain

$$a_r = \ddot{r} - r\dot{\theta}^2 = -3.664 - 0.8660(2^2) = -7.128 \text{ ft/s}^2$$
$$a_\theta = \ddot{r\theta} + 2\dot{r\theta} = 0.8660(4) + 2(-1)(2) = -0.5359 \text{ ft/s}^2$$

Equations of Motion: By referring to Fig. (a),

$$\Sigma F_r = ma_r;$$
 $-N\cos 30^\circ = \frac{0.75}{32.2}(-7.128)$ $N = 0.1917$ lb

$$\Sigma F_{\theta} = ma_{\theta};$$
 $F = 0.1917 \sin 30^{\circ} = \frac{0.75}{32.2} (-0.5359)$ $F = 0.0835 \text{ lb}$ Ans

•13–101. The forked rod is used to move the smooth 2-lb particle around the horizontal path in the shape of a limaçon, $r = (2 + \cos \theta)$ ft. If $\theta = (0.5t^2)$ rad, where t is in seconds, determine the force which the rod exerts on the particle at the instant t = 1 s. The fork and path contact the particle on only one side.

 $\theta = 0.5t^2$

 $r = 2 + \cos \theta$

$$\dot{r} = -\sin \theta \theta \qquad \dot{\theta} = t$$

$$\ddot{r} = -\cos \theta \dot{\theta}^2 - \sin \theta \ddot{\theta} \qquad \ddot{\theta} = 1 \text{ rad/s}^2$$

At $t = 1 \text{ s}, \theta = 0.5 \text{ rad}, \theta = 1 \text{ rad/s}, \text{ and } \ddot{\theta} = 1 \text{ rad/s}^2$
 $r = 2 + \cos 0.5 = 2.8776 \text{ ft}$
 $\dot{r} = -\sin 0.5(1) = -0.4974 \text{ ft/s}^2$
 $\ddot{r} = -\cos 0.5(1)^2 - \sin 0.5(1) = -1.357 \text{ ft/s}^2$
 $a_r = \ddot{r} - r\dot{\theta}^2 = -1.375 - 2.8776(1)^2 = -4.2346 \text{ ft/s}^2$
 $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} = 2.8776(1) + 2(-0.4794)(1) = 1.9187 \text{ ft/s}^2$
 $\tan \psi = \frac{r}{dr/d\theta} = \frac{2 + \cos \theta}{-\sin \theta} \bigg|_{\theta=0.5 \text{ rad}} = -6.002 \quad \psi = -80.54^\circ$
 $+\mathcal{P}\Sigma F_r = ma_r; \qquad -N \cos 9.46^\circ = \frac{2}{32.2}(-4.2346) \qquad N = 0.2666 \text{ lb}$
 $+\nabla \Sigma F_{\theta} = ma_{\theta}; \qquad F - 0.2666 \sin 9.46^\circ = \frac{2}{32.2}(1.9187)$
 $F = 0.163 \text{ lb}$

