-13-13. The two boxcars A and B have a weight of 20000 lb and 30000 lb , respectively. If they coast freely down the incline when the brakes are applied to all the wheels of car A causing it to skid, determine the force in the coupling C
 between the two cars. The coefficient of kinetic friction between the wheels of A and the tracks is $\mu_{k}=0.5$. The wheels of car B are free to roll. Neglect their mass in the calculation. Suggestion: Solve the problem by representing single resultant normal forces acting on A and B, respectively.
$\operatorname{Car} A$:
$+\Sigma \Sigma F_{y}=0 ; \quad N_{A}-20000 \cos 5^{\circ}=0 \quad N_{A}=19923.89 \mathrm{lb}$
$+\nearrow \Sigma F_{x}=m a_{x} ; \quad 0.5(19923.89)-T-20000 \sin 5^{\circ}=\left(\frac{20000}{32.2}\right) a$
(1)

Both cars:
$+\nearrow \Sigma F_{x}=m a_{x} ; \quad 0.5(19923.89)-50000 \sin 5^{\circ}=\left(\frac{50000}{32.2}\right) a$
Solving,
$a=3.61 \mathrm{ft} / \mathrm{s}^{2}$
$T=5.98 \mathrm{kip}$
Ans.

*13-16. The man pushes on the $60-\mathrm{lb}$ crate with a force \mathbf{F}. The force is always directed down at 30° from the horizontal as shown, and its magnitude is increased until the crate begins to slide. Determine the crate's initial acceleration if the coefficient of static friction is $\mu_{s}=0.6$ and the coefficient of kinetic friction is $\mu_{k}=0.3$.

Force to produce motion:

$$
\begin{array}{ll}
\text { 丸 } \Sigma F_{x}=0 ; & F \cos 30^{\circ}-0.6 N=0 \\
+\uparrow \Sigma F_{y}=0 ; & N-60-F \sin 30^{\circ}=0 \\
& N=91.80 \mathrm{lb} \quad F=63.60 \mathrm{lb}
\end{array}
$$

Since $N=91.80 \mathrm{lb}$,

$$
\begin{gathered}
\xrightarrow{ \pm} \Sigma F_{x}=m a_{x} ; \quad 63.60 \cos 30^{\circ}-0.3(91.80)=\left(\frac{60}{32.2}\right) a \\
a=14.8 \mathrm{ft} / \mathrm{s}^{2}
\end{gathered}
$$

Ans.
-13-33. The 2-lb collar C fits loosely on the smooth shaft. If the spring is unstretched when $s=0$ and the collar is given a velocity of $15 \mathrm{ft} / \mathrm{s}$, determine the velocity of the collar when $s=1 \mathrm{ft}$.

$$
\begin{aligned}
& F_{s}=k x ; \quad F_{s}=4\left(\sqrt{1+s^{2}}-1\right) \\
& \xrightarrow{+} \Sigma F_{x}=m a_{x} ; \quad-4\left(\sqrt{1+s^{2}}-1\right)\left(\frac{s}{\sqrt{1+s^{2}}}\right)=\left(\frac{2}{32.2}\right)\left(v \frac{d v}{d s}\right) \\
& -\int_{0}^{1}\left(4 s d s-\frac{4 s d s}{\sqrt{1+s^{2}}}\right)=\int_{15}^{v}\left(\frac{2}{32.2}\right) v d v \\
& -\left[2 s^{2}-4 \sqrt{1+s^{2}}\right]_{0}^{1}=\frac{1}{32.2}\left(v^{2}-15^{2}\right) \\
& v=14.6 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Ans.

-13-49. The $2-\mathrm{kg}$ block B and $15-\mathrm{kg}$ cylinder A are connected to a light cord that passes through a hole in the center of the smooth table. If the block travels along a circular path of radius $r=1.5 \mathrm{~m}$, determine the speed of the block.

Free-Body Diagram: The free-body diagram of block B is shown in Fig. (a). The tension in the cord is equal to the weight of cylinder A, i.e., $T=15(9.81) \mathrm{N}=147.15 \mathrm{~N}$. Here, \mathbf{a}_{n} must be directed towards the center of the circular path (positive n axis).

Equations of Motion: Realizing that $a_{n}=\frac{v^{2}}{r}=\frac{v^{2}}{1.5}$ and referring to Fig. (a),

$$
\begin{array}{cc}
\Sigma F_{n}=m a_{n} ; & 147.15=2\left(\frac{v^{2}}{1.5}\right) \\
& v=10.5 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Ans.

13-51. At the instant shown, the radius of curvature of the vertical trajectory of the $50-\mathrm{kg}$ projectile is $\rho=200 \mathrm{~m}$. Determine the speed of the projectile at this instant.

Free-Body Diagram: The free-body diagram of the projectile is shown in Fig. (a). Here, \mathbf{a}_{n} must be directed towards the center of curvature of the trajectory (positive n axis).

Equations of Motion: Here, $a_{n}=\frac{v^{2}}{\rho}=\frac{v^{2}}{200}$. By referring to Fig. (a),

$$
\begin{array}{ll}
\searrow+\Sigma F_{n}=m a_{n} ; & 50(9.81) \cos 30^{\circ}=50\left(\frac{v^{2}}{200}\right) \\
& v=41.2 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Ans.

13-62. The ball has a mass of 30 kg and a speed $v=4 \mathrm{~m} / \mathrm{s}$ at the instant it is at its lowest point, $\theta=0^{\circ}$. Determine the tension in the cord and the rate at which the ball's speed is decreasing at the instant $\theta=20^{\circ}$. Neglect the size of the ball.
$+\nwarrow \Sigma F_{n}=m a_{n} ; \quad T-30(9.81) \cos \theta=30\left(\frac{v^{2}}{4}\right)$
$+\nearrow \Sigma F_{t}=m a_{t} ; \quad-30(9.81) \sin \theta=30 a_{t}$
$a_{t}=-9.81 \sin \theta$
$a_{t} d s=v d v$ Since $d s=4 d \theta$, then
$-9.81 \int_{0}^{\theta} \sin \theta(4 d \theta)=\int_{4}^{v} v d v$
$\left.9.81(4) \cos \theta\right|_{0} ^{\theta}=\frac{1}{2}(v)^{2}-\frac{1}{2}(4)^{2}$
$39.24(\cos \theta-1)+8=\frac{1}{2} v^{2}$

At $\theta=20^{\circ}$
$v=3.357 \mathrm{~m} / \mathrm{s}$
$a_{t}=-3.36 \mathrm{~m} / \mathrm{s}^{2}=3.36 \mathrm{~m} / \mathrm{s}^{2} \quad \swarrow$
$T=361 \mathrm{~N}$

Ans.

13-67. If the coefficient of static friction between the tires and the road surface is $\mu_{s}=0.25$, determine the maximum speed of the $1.5-\mathrm{Mg}$ car without causing it to slide when it travels on the curve. Neglect the size of the car.

Free-Body Diagram: The frictional force \mathbf{F}_{f} developed between the tires and the road surface and \mathbf{a}_{n} must be directed towards the center of curvature (positive n axis) as indicated on the free-body diagram of the car, Fig. (a).

Equations of Motion: Realizing that $a_{n}=\frac{v^{2}}{\rho}=\frac{v^{2}}{200}$ and referring to Fig. (a),

$$
+\nwarrow \Sigma F_{n}=m a_{n} ; \quad F_{f}=1500\left(\frac{v^{2}}{200}\right)=7.5 v^{2}
$$

The normal reaction acting on the car is equal to the weight of the car, i.e., $N=1500(9.81)=14715 \mathrm{~N}$. When the car is on the verge of sliding,

$$
\begin{aligned}
& F_{f}=\mu_{s} N \\
& 7.5 v^{2}=0.25(14715) \\
& v=22.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

13-94. If the position of the $3-\mathrm{kg}$ collar C on the smooth rod $A B$ is held at $r=720 \mathrm{~mm}$, determine the constant angular velocity θ at which the mechanism is rotating about the vertical axis. The spring has an unstretched length of 400 mm . Neglect the mass of the rod and the size of the collar.

Free-Body Diagram: The free-body diagram of the collar is shown in Fig. (a). The force in the spring is given by $F_{\text {sp }}=k s=200\left(\sqrt{0.72^{2}+0.3^{2}}-0.4\right)=76 \mathrm{~N}$. Here, \mathbf{a}_{r} is assumed to be directed towards the positive r axis.

Equations of Motion: By referring to Fig. (a),

$$
\xrightarrow{\text { 土 }} \Sigma F_{r}=m a_{r} ; \quad-76\left(\frac{12}{13}\right)=3 a_{r} \quad a_{r}=-23.38 \mathrm{~m} / \mathrm{s}^{2}
$$

Kinematics: Since $r=0.72 \mathrm{~m}$ is constant, $\dot{r}=\ddot{r}=0$.

$$
\begin{aligned}
& a_{r}=\ddot{r}-r \dot{\theta}^{2} \\
& -23.38=0-0.72 \dot{\theta}^{2} \\
& \dot{\theta}=5.70 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Ans.

(a)

13-95. The mechanism is rotating about the vertical axis with a constant angular velocity of $\dot{\theta}=6 \mathrm{rad} / \mathrm{s}$. If $\operatorname{rod} A B$ is smooth, determine the constant position r of the $3-\mathrm{kg}$ collar C. The spring has an unstretched length of 400 mm . Neglect the mass of the rod and the size of the collar.

Free-Body Diagram: The free-body diagram of the collar is shown in Fig. (a). The force in the spring is given by $F_{\mathrm{sp}}=k s=200\left(\sqrt{r^{2}+0.3^{2}}-0.4\right)$. Here, \mathbf{a}_{r} is assumed to be directed towards the positive r axis.

Equations of Motion: By referring to Fig. (a),

$$
\begin{equation*}
\xrightarrow{\rightarrow} \Sigma F_{r}=m a_{r} ; \quad-200\left(\sqrt{r^{2}+0.3^{2}}-0.4\right) \cos \alpha=3 a_{r} \tag{1}
\end{equation*}
$$

However, from the geometry shown in Fig. (b),

$$
\cos \alpha=\frac{r}{\sqrt{r^{2}+0.3^{2}}}
$$

Thus, Eq. (1) can be rewritten as

$$
\begin{equation*}
-200\left(r-\frac{0.4 r}{\sqrt{r^{2}+0.3^{2}}}\right)=3 a_{r} \tag{2}
\end{equation*}
$$

Kinematics: Since r is constant, $\dot{r}=\ddot{r}=0$.

$$
\begin{equation*}
a_{r}=\ddot{r}-r \dot{\theta}^{2}=-r\left(6^{2}\right) \tag{3}
\end{equation*}
$$

Substituting Eq. (3) into Eq. (2) and solving,

$$
r=0.8162 \mathrm{~m}=816 \mathrm{~mm}
$$

(a)

Ans.
0.3

(b)
-13-97. The $0.75-\mathrm{lb}$ smooth can is guided along the circular path using the arm guide. If the arm has an angular velocity $\dot{\theta}=2 \mathrm{rad} / \mathrm{s}$ and an angular acceleration $\ddot{\theta}=0.4 \mathrm{rad} / \mathrm{s}^{2}$ at the instant $\theta=30^{\circ}$, determine the force of the guide on the can. Motion occurs in the horizontal plane.

$$
\begin{aligned}
& r=\left.\cos \theta\right|_{\theta=30^{\circ}}=0.8660 \mathrm{ft} \\
& \dot{r}=-\left.\sin \theta \dot{\theta}\right|_{\theta=30^{\circ}}=-1.00 \mathrm{ft} / \mathrm{s} \\
& \ddot{r}=-\left.\left(\cos \theta \dot{\theta}^{2}+\sin \ddot{\theta}\right)\right|_{\theta=30^{\circ}}=-3.664 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

Using the above time derivative, we obtain

$$
\begin{aligned}
& a_{r}=\ddot{r}-r \dot{\theta}^{2}=-3.664-0.8660\left(2^{2}\right)=-7.128 \mathrm{ft} / \mathrm{s}^{2} \\
& a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}=0.8660(4)+2(-1)(2)=-0.5359 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

Equations of Motion: By referring to Fig. (a),

$$
\begin{array}{lll}
\Sigma F_{r}=m a_{r} ; & -N \cos 30^{\circ}=\frac{0.75}{32.2}(-7.128) & N=0.1917 \mathrm{lb} \\
\Sigma F_{\theta}=m a_{\theta} ; & F-0.1917 \sin 30^{\circ}=\frac{0.75}{32.2}(-0.5359) & F=0.0835 \mathrm{lb}
\end{array}
$$

Ans.
-13-101. The forked rod is used to move the smooth 2-lb particle around the horizontal path in the shape of a limaçon, $r=(2+\cos \theta) \mathrm{ft}$. If $\theta=\left(0.5 t^{2}\right) \mathrm{rad}$, where t is in seconds, determine the force which the rod exerts on the particle at the instant $t=1 \mathrm{~s}$. The fork and path contact the particle on only one side.
$r=2+\cos \theta$
$\theta=0.5 t^{2}$
$\dot{r}=-\sin \theta \theta$
$\dot{\theta}=t$
$\ddot{r}=-\cos \theta \dot{\theta}^{2}-\sin \ddot{\theta}$
$\ddot{\theta}=1 \mathrm{rad} / \mathrm{s}^{2}$
At $t=1 \mathrm{~s}, \theta=0.5 \mathrm{rad}, \theta=1 \mathrm{rad} / \mathrm{s}$, and $\ddot{\theta}=1 \mathrm{rad} / \mathrm{s}^{2}$
$r=2+\cos 0.5=2.8776 \mathrm{ft}$
$\dot{r}=-\sin 0.5(1)=-0.4974 \mathrm{ft} / \mathrm{s}^{2}$
$\ddot{r}=-\cos 0.5(1)^{2}-\sin 0.5(1)=-1.357 \mathrm{ft} / \mathrm{s}^{2}$
$a_{r}=\ddot{r}-r \dot{\theta}^{2}=-1.375-2.8776(1)^{2}=-4.2346 \mathrm{ft} / \mathrm{s}^{2}$
$a_{\theta}=\ddot{r} \ddot{\theta}+2 \dot{r} \dot{\theta}=2.8776(1)+2(-0.4794)(1)=1.9187 \mathrm{ft} / \mathrm{s}^{2}$
$\tan \psi=\frac{r}{d r / d \theta}=\left.\frac{2+\cos \theta}{-\sin \theta}\right|_{\theta=0.5 \mathrm{rad}}=-6.002 \quad \psi=-80.54^{\circ}$
$+\nearrow \Sigma F_{r}=m a_{r} ; \quad-N \cos 9.46^{\circ}=\frac{2}{32.2}(-4.2346) \quad N=0.2666 \mathrm{lb}$
$+\nwarrow \Sigma F_{\theta}=m a_{\theta} ; \quad F-0.2666 \sin 9.46^{\circ}=\frac{2}{32.2}(1.9187)$

$$
F=0.163 \mathrm{lb}
$$

