EXAMPLE |16.1

Fig. 16-5

F

A cord is wrapped around a wheel in Fig. 16-5, which is initially at rest
when ¢ = 0. If a force 1s applied to the cord and gives it an
acceleration @ = (4¢) m/s>, where f is in seconds, determine, as a
function of time, (a) the angular velocity of the wheel, and (b) the
angular position of line OP in radians.

SOLUTION

Part (a). The wheelissubjected to rotation about a fixed axis passing
through point O. Thus. point P on the wheel has motion about a
circular path. and the acceleration of this point has both tangential and
normal components. The tangential component is (ap), = (4t) m/s?,
since the cord is wrapped around the wheel and moves fangent Lo it.
Hence the angular acceleration of the wheel is

(C_+) (ﬂph = ar
(4t) m/s* = a(0.2m)
a = (20t) rad/s?)
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EXAMPLE |16.1 CONTINUED

Using this result, the wheel's angular velocity o can now be
determined from « = dw/dt, since this equation relates a. 1. and .
Integrating, with the initial condition that @ = O whent = 0, yields

d
() a = 2 = (20¢) rad/s?
dt
] r
fd(u = /ZUI dt
0 0
w = 10t rad/s ) Ans.

Part (b). Using this result, the angular position # of OP can be
found from o = df/dt, since this equation relates #, w, and I.
Integrating, with the initial condition # = 0 whent = (0, we have

d
(C+) = b= (10£%) rad/s
H t
]aa = / 10¢2 dt
0 ]

6 = 3.33t rad Ans.

NOTE: We cannot use the equation of constant angular acceleration,
since « is a function of time.
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EXAMPLE |16.2

The motor shown in the photo is used to turn a wheel and attached
blower contained within the housing. The details of the design are
shown in Fig, 16-6a. If the pulley A connected to the motor begins to
rotate from rest with a constant angular acceleration of a4 = 2 rad/s%,
determine the magnitudes of the velocity and acceleration of point P
on the wheel. after the pulley has turned two revolutions. Assume the
transmission belt does not slip on the pulley and wheel.

SOLUTION

Angular Motion. First we will convert the two revolutions to
radians. Since there are 27 rad in one revolution. then

27 rad

) = 1257 rad
1 rev

HAzzrev(
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EXAMPLE [16.2 CONTINUED

Since a4 1s constant, the angular velocity of pulley A is therefore
(C+) w? = wh + 2a.(0 — 6)

w4 = 0 + 2(2 rad/s?)(12.57 rad — 0)
wy = 7.090 rad/s

The belt has the same speed and tangential component of
acceleration as it passes over the pulley and wheel. Thus,

vV = wyry = wprg: 7.090rad/s (0.15 m) = wp(0.4m)
wg = 2.659 rad/s

@, = aury = agrg; 2rad/s? (0.15m) = ag(0.4 m)

ag = 0.750 rad/s?

Motion of P. As shown on the kinematic diagram in Fig. 16-6b,

we have
vp = wgrg = 2.65Y9 rad/s (0.4 m) = 1.06 m/s Ans. i
(ap); = agrg = 0.750 rad/s* (0.4 m) = 0.3 m/s? ~ N\ [@p))
(8p) e
(ap), = whry = (2.659 rad/s)?(0.4 m) = 2.827 m/s> = —F
Thus (b)
ap = V(03m/s?)? + (2827 m/s?)? = 284 m/s*?  Auns. Fig. 16-6
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EXAMPLE |16.3

The end of rod R shown in Fig. 16-7 maintains contact with the cam
by means of a spring, If the cam rotates about an axis passing through
point O with an angular acceleration e and angular velocity o,
determine the velocity and acceleration of the rod when the cam is in
the arbitrary position 6.

Fig. 16-7
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EXAMPLE [16.3 CONTINUED

SOLUTION

Position Coordinate Equation. Coordinates # and x are chosen in
order to relate the rotational motion of the line segment OA on the
cam to the rectilinear translation of the rod. These coordinates are
measured from the fixed point O and can be related to each other
using trigonometry. Since OC = CB = r cos #, Fig. 16-7, then

x =2rcoséb

Time Derivatives. Using the chain rule of calculus, we have

dx . an
. —2r(sin #) It
v = —2rmsin # Ans.
d d d#
d—f = —2r(£) sin 6 — 2ra(cos 6
a = —2r(asind + w’cos #) Ans.

NOTE: The negative signs indicate that v and a are opposite to the
direction of positive x. This seems reasonable when you visualize
the motion.
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EXAMPLE |16.4

At a given instant, the cylinder of radius r, shown in Fig. 16-8, has an
angular velocity e and angular acceleration a. Determine the
velocity and acceleration of its center G if the cylinder rolls without

slipping.
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EXAMPLE |16.4 CONTINUED

SOLUTION

Position Coordinate Equation. The cylinder undergoes general
plane motion since it simultaneously translates and rotates. By
inspection, point G moves in a straight line to the left, from G to G', as
the cylinder rolls, Fig. 16-8. Consequently its new position G' will be
specified by the horizontal position coordinate sg. which is measured
from G to G'. Also, as the cylinder rolls (without slipping), the arc
length A'B on the rim which was in contact with the ground from
Ao B. is equivalent to sg. Consequently, the motion requires the
radial line GA to rotate # to the position G'A’. Since the arc
A'B = r#.then G travels a distance

M= rt
Time Derivatives. Taking successive time derivatives of this

equation. realizing that r is constant, w = d#/dt, and & = dw/dt, gives
the necessary relationships:

Jog=7T1 f
Vg = rw Ans.
g = ra Ans.

NOTE: Remember that these relationships are valid only if the
cylinder (disk, wheel, ball. etc.) rolls without slipping.
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EXAMPLE |16.5

The large window in Fig. 16-9 1s opened using a hydraulic cylinder
AB. Il the cylinder extends at a constant rate of 0.5 m/s, determine the
angular velocity and angular acceleration of the window at the instant
6 = 30°.

SOLUTION

Position Coordinate Equation. The angular motion of the window
can be obtained using the coordinate #, whereas the extension or
motion along the hydraulic cylinder 1s defined using a coordinate s,
which measures its length from the fixed point A to the moving
point B. These coordinates can be related using the law of cosines,

namely,
s2=(02m)’+ (1m)*>—2(2m)(1 m)cosé
s?=5—4cosb (1)
Fig. 16-9 When # = 307,
s = 1.239m
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EXAMPLE |16.5 CONTINUED

Time Derivatives. Taking the time derivatives of Eq. 1, we have

ds db
Bg—= 0= H—wnd)y—
dt S
s(vs) = 2(sin #)w (2)

Since ¥, = 0.5 m/s, then at 8 = 307,

(1.239 m)(0.5 m/s) = 2 sin 30w

w = 0.6197 rad/s = 0.620 rad/s Ans.
Taking the time derivative of Eq. 2 yields

d dv dn d
d%;vs + Sd_: = 2(cos ﬁ)Ew + 2(sin 9)§

v? + sa, = 2(cos B)w® + 2(sin §)a
Since a; = dvg/dt = 0, then
(0.5m/s)? + 0 = 2 cos 30°(0.6197 rad/s)* + 2 sin 30°a
a = —0.415 rad/s? Ans.

Because the result is negative, it indicates the window has an
angular deceleration.
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EXAMPLE [16.6

The link shown in Fig. 16—13a is guided by two blocks at A and B,

which move in the fixed slots. If the velocity of A is 2 m/s downward,

determine the velocity of B at the instant # = 45°. Ve =2m/s
!

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. Since points A and B are restricted to move g=45°

along the fixed slots and v 4 is directed downward. the velocity vy must
be directed horizontally to the right, Fig. 16-13b. This motion causes
the link to rotate counterclockwise: that is, by the right-hand rule the
angular velocity e is directed outward. perpendicular to the plane of
motion. Knowing the magnitude and direction of v 4 and the lines of
action of vg and e. it is possible to apply the velocity equation
VR = V4 T @ X Ig/4 to points A and B in order to solve for the two
unknown magnitudes vp and . Since rg; 4 is needed. it is also shown
in Fig. 16-135b.
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EXAMPLE |16.6 CONTINUED

Velocity Equation. Expressing each of the vectors in Fig. 16-13b in
terms of their i, j, k components and applying Eq. 16-16 to A, the base
point, and B, we have

VB = VYat @ XIpiy
vgi = —2j + [wk % (0.2 sin 45° — 0.2 cos 45%)]

vpi = —2j + 02w sin 45%) + 0.2 cos 451

Equating the i and j components gives

(b)

vg = 02w cos 45° 0= -2 + 02w sin 45°

Fig. 16-13
Thus,

w = 14.1 rad/sD

vg = 2m/s — Ans.

Since both resulls are positive, the directions of vg and e are indeed
correct as shown in Fig. 16-13b. It should be emphasized that these
results are valid only at the instant 6 = 45", A recalculation for
# = 44° yields vg = 2.07m/s and @ = 14.4 rad/s; whereas when
# = 46°, vg = 1.93 m/s and @ = 13.9 rad/s, etc.

NOTE: Once the velocity of a point (A) on the link and the angular
velocity are known, the velocity of any other point on the link can be
determined. As an exercise. see if you can apply Eq. 16-16 to points A
and C or to points B and C and show that when & = 45°,
ve = 3.16 m/s, directed at an angle of 18.4° up from the horizontal.
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EXAMPLE |16.7

The cylinder shown in Fig. 16—14a rolls without slipping on the surface
of a conveyor belt which is moving at 2 ft/s. Determine the velocity of
point A. The cylinder has a clockwise angular velocity @ = 15 rad/s at
the instant shown.

SOLUTION I (VECTOR ANALYSIS)

Kinematic Diagram. Since no slipping occurs. point B on the
cylinder has the same velocity as the conveyor, Fig. 16-14b. Also, the
angular velocity of the cylinder is known, so we can apply the velocity
equation to B. the base point, and A to determine v 4.

Velocity Equation.
Vo = Vgt @ X I'yp
(va)dd + (va)yj = 2i + (—15k) X (—0.5i + 0.5f)
(Va)ud + (va)yj = 2i + 7.50j + 7.501

so that
(), = 2 + 7.50 = 9.50 ft/s (1)
(v4)y = 7.50 ft/s 2)
Thus.
vy = V(9.50)2 + (750 = 12.1 ft/s Ans.
6 = tan‘l% =383 2 Ans.
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EXAMPLE |16.7 CONTINUED

SOLUTION Il (SCALAR ANALYSIS)
\w il As an alternalive procedure, the scalar components ol vy = vg + V45
; ) can be obtained directly. From the kinematic diagram showing the

‘j ' 5 relative “circular™ motion which produces v 4,5. Fig. 16-14¢, we have
0.5 ft 0.5 ft
= = (15 rad/s = 10.6 ft/s
vap = wrap = (151a /5)(035 450) /s
Thus,
Relative ;notion V4= Vg + Vyp
(c
(V4)x - (va)y| _ |21t/s o 10.6 ft/s
Fig. 16-14 o T | L~ = 45°
Equating the x and y components gives the same results as before,
namely,
=9 (vq)y = 2 + 10.6 cos 45° = 9.50 ft/s
+1 (v4)y =0 + 10.6 sin 45° = 7.50 /s
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EXAMPLE [16.8

The collar C in Fig. 16—15a is moving downward with a velocity of
2 m/s. Determine the angular velocity of CB at this instant.

SOLUTION I (VECTOR ANALYSIS) ve=2m/s l

Kinematic Diagram. The downward motion of C causes B to
move to the right along a curved path. Also, CB and AB rotate
counterclockwise.

Velocity Equation. Link CB (general plane motion): See Fig. 16-15b.

Yg = Yo = g = rB,."'C (a)
vgl = —2j + wegk X (021 — 0.2j)

'UBi = _2j e U.EU_J'CBj e U.?.LUCBi

Vg = U'EI-UCB (1}
weg = 10 rad/s Ans.

vg = 2 m/fs —

(b)
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EXAMPLE |16.8 CONTINUED

SOLUTION II (SCALAR ANALYSIS)

The scalar component equations of vg = v + vgc can be obtained
directly. The kinematic diagram in Fig. 16-15¢ shows the relative
“circular” motion which produces vg,c. We have

‘FB — ‘?C + ‘IBI.I’C

[ L } — [2 m/s ] 4 [(“CB(O'ZVZ m)} Relative motion
— ! 245° ©
Resolving these vectors in the x and y directions yields T

_ T84
i vg = 0 + wep(0.2V/2 cos 45°) NP
(+1 0 = =2 + wcp(0.2V2 sin 45°) o3
which is the same as Eqs. 1 and 2. + g vy =2 ms

B
NOTE: Since link AB rotates about a fixed axis and vg is known, (d)
Fig. 16-15d. 1ts angular velocity is found f[rom vg = w4pgrag OF
Fig. 16-15

2m/s = ayg (0.2 m), w4 = 10 rad/s.
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EXAMPLE |16.9

The bar AB of the linkage shown in Fig. 16-16a has a clockwise
angular velocity of 30 rad/s when # = 60°. Determine the angular
velocities of member BC and the wheel at this instant.

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. By inspection, the velocities of points B and C
are defined by the rotation of link AB and the wheel about their fixed
axes, The position vectors and the angular velocity of each member
are shown on the kinematic diagram in Fig. 16—16b. To solve, we will
write the appropriate kinematic equation for each member.

(a)
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EXAMPLE |16.9 CONTINUED

Velocity Equation. Link AB (rotation about a fixed axis):

Yg = @ 4R * I'g
= (—30K) x (0.2cos 60°i + 0.2 sin 60%)

= {5.20i — 3.0} m/s

Y¢ Link BC (general plane motion):

Yo = Vg + g * rCfB

vl = 5200 — 3.0 + (wpck) X (0.21)
(b) 'U(:i = 5.201 + (U.?.(UBC == SU)j
Fig. 16-16 ve = 5.20m/s

0= U.szC =510

wge = 15rad/sd Ans,
Wheel (rotation about a fixed axis):

Yo = p b I
5.20i = (wpk) % (—0.1j)
520 = 0.1wp

wp = 52.0rad/sD Ans.

PEARSON
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EXAMPLE [16.10

Show how to determine the location of the instantaneous center of
zero velocity for (a) member BC shown in Fig, 16-20a: and (b) the link
CB shown in Fig. 16-20c.

(b)
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EXAMPLE |16.10 CONTINUED

SOLUTION

Part (a). As shown in Fig. 16-20a. point B moves in a circular path
such that vg is perpendicular to AB. Therelore. 1t acts at an angle ¢
from the horizontal as shown m Fig. 16-20b6. The motion of point B

© causes the piston to move forward horizontally with a velocity ve.
i When lines are drawn perpendicular to vg and v, Fig. 16-20b, they
N\ intersect at the IC.

Yeqo C
Part (b). Points B and C follow circular paths of motion since links AB
A and DC are each subjected to rotation about a fixed axis, Fig. 16-20c.
IE< 1] wes Since the velocity is always tangent to the path, at the instant considered,
‘ veonrod DC and vg on rod AB are both directed vertically downward,
2BAC B along the axis of link CB, Fig. 16-20d. Radial lines drawn perpendicular
i to these two velocities form parallel lines which intersect at “infinity;”
VB E el 22 and Fpirc —* 29, Thus, wcg = (EJC/TC;’IC) — (0. As a
(d) result, link CB momentarily fransfates. An instant later, however, CB will

move to a tilted position, causing the /C to move to some finite location.
Fig. 16-20

Engineering _Mechanics: Dynamics, Twelfth Edition
mmmmea Russell C. Hibbeler



EXAMPLE [16.11

Block D shown in Fig. 16-21a moves with a speed of 3 m/s. Determine
the angular velocities of links BD and AB. at the instant shown.

4_;

(a)

Engineering _Mechanics: Dynamics, Twelfth Edition
mmmmea Russell C. Hibbeler



EXAMPLE |16.11 CONTINUED

SOLUTION 1C
As D moves to the right. it causes AB to rotate clockwise about point
A. Hence, vg is directed perpendicular to AB. The instantaneous
center of zero velocity for B0 is located at the intersection of the line
segments drawn perpendicular to vg and vp. Fig. 16-215. From the
geomelry,

rBf'IC =04tan 45" m = 04 m

0.4 m
=—— =05
rD,"IC' —T 0.5657 m

Since the magnitude of vp is known, the angular velocity of link BD is

_wp  3mfs
®BD Ty 0.5657m

5.30 rad/s Ans.

The velocity of B is therefore
vg = wpp(rpuc) = 5.30rad/s (0.4 m) = 212 m/s ~G45°

From Fig. 16-21¢, the angular velocity of AB is

vy 212m/s
= = = 5.30 rad/s ARS.
AB TBiA 0.4m j‘ D
NOTE: Try and solve this problem by applying vp = vg + vpp (O ©)
member BD. Fig. 16-21
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EXAMPLE |16.12

The cylinder shown in Fig. 16-22a rolls without slipping between the
two moving plates E and D). Determine the angular velocity of the
cylinder and the velocity of its center C.

v =0.25 m/s

¥p =04 m/s
-
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EXAMPLE |16.12 CONTINUED

A v, =025m/s SOLUTION

= B Since no slipping occurs, the contact points A and B on the cylinder
have the same velocities as the plates £ and D, respectively.
Furthermore, the velocities vy and vg are parallel, so that by the
proportionality of right triangles the /C is located at a point on line AB,

025 m

0.125 m ,ﬁ" . Fig. 16-22bh. Assuming this point to be a distance x from B, we have
e
v;l;iﬂ.ﬁi m /s B Vg = WX 0.4 m/s = wx
(b) vy =0(025m - x); 025m/s = w(0.25m — x)
Fig. 16-22 Dividing one equation into the other eliminates o and yields

0.4(0.25 — x) = 0.25x

Hence, the angular velocity of the cylinder is

_wvg  04mfs |
e 2.60 rad/s 2 Ans.

The velocity of point C is therefore
Ve = wrepe = 2.60 rad/s (0.1538 m — 0.125m)

= 0.0750 m/s < Ans.
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EXAMPLE |16.13

The crankshaft AB turns with a clockwise angular velocity of 10 rad/s,
Fig. 16-23a. Determine the velocity of the piston at the instant shown.

0758t M\, oo

wpe = 243 rad/s

wapg= 10rad/s

025ft YO A
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EXAMPLE |16.13 CONTINUED

SOLUTION
The crankshaft rotates about a fixed axis, and so the velocity of point
Bis

vg = 10rad/s (0.25 ft) = 2.50 ft/s 2 45°

Since the directions of the velocities of B and C are known, then the
location of the /C for the connecting rod BC is at the intersection of
the lines extended from these points, perpendicular to vg and v,
Fig. 16-23b. The magnitudes of rg ¢ and r¢ye can be obtained from
the geometry of the triangle and the law of sines, 1.e.,

. C
0.75ft _ Tsjuc
sin 45”  sin 76.4°
rB,l’IC = 1.031 ft 0,75 ft
0.75ft  Tcuc
sin 457 sin 58.6° S
rCXIC = (0.9056 ft B
The rotational sense of @ ge must be the same as the rotation caused (b)
by vy about the /C, which is counterclockwise. Therefore, Fig. 16-23
Vg 2.5 ft/s

- - = 2425 rad
o T a8

Using this result, the velocity of the piston is

Ve = wpcrepe = (2.425 rad/s)(0.9056 ft) = 2.20 ft/s  Ans.
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EXAMPLE [16.14

10m The rod AB shown in Fig. 16-27a is confined to move along the
inclined planes at A and B. If point A has an acceleration of 3 m/s?
and a velocity of 2 m/s, both directed down the plane at the instant
. the rod is horizontal, determine the angular acceleration of the rod at
;’: = :?r?,fz this instant.
(a) SOLUTION I (VECTOR ANALYSIS)
We will apply the acceleration equation to points A and B on the rod.
4 To do so it 1s first necessary to determine the angular velocity of the
Lx g rod. Show that it is « = 0283 rad/sD using either the velocity
A o Taja- B/<fS° equation or the method of instantaneous centers.
[ - —- -
'5 45°" w = 0.283 rad/s Kinematic Diagram. Since points A and B both move along
straight-line paths, they have no components of acceleration normal
ay=3m/s* 5 to the paths. There are two unknowns in Fig. 16-27b. namely, ag and «.
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EXAMPLE [16.14 CONTINUED

Acceleration Equation.

dp = d 4 + a X rBfA - wzl'ﬁf_,q
apcos 45°i + agsin45°j = 3cos 45°1 — 3sin 45°%) + (ak) x (10i) — (0.2%3)2(1&)

Carrying out the cross product and equating the i and j components
yields

ag cos 45° = 3 cos 45° — (0.283)%(10) (1)
agsin 45° = —3sin 45" + «(10) (2)
Solving, we have

ag = 1.87 m/s’245°
0.344 rad/s* 9 Ans.

o

SOLUTION Il (SCALAR ANALYSIS)
From the kinematic diagram, showing the relative-acceleration

(apa) = rg,y  components (agq); and (ag 4),, Fig. 16-27¢, we have

' 10 m
A @y v (dg), = fﬂg-’BmL ag = a4 + (aﬂfﬂ.)r i (aﬂfﬂ}n
c —— —— :
7 = 0283 rad/s "ty [ ag } _ [3 m,.st] . {u(l()m)} . {((].283 rad/s)(10 m)]
£45° G45° 1 e
)
. Equating the x and y components yields Egs. 1 and 2, and the solution
Fig. 16-27 proceeds as before.
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EXAMPLE [16.15

Al a given instant, the cylinder of radius r, shown in Fig. 16—28a. has an
angular velocity @ and angular acceleration e. Determine the
velocity and acceleration of its center & and the acceleration of the
contact point at A if it rolls without slipping.

SOLUTION (VECTOR ANALYSIS)

Velocity Analysis. Since no slipping occurs, at the instant A (a)
contacts the ground, v4 = 0. Thus, from the kinematic diagram in
Fig. 16-28b we have

‘;G:vA+m><rG;'A
vl = 0 + (—wk) X (rj)
Vg = wr (1) Ans.

This same result can also be obtained directly by noting that point A
represents the instantaneous center of zero velocity.
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EXAMPLE |16.15 CONTINUED

Kinematic Diagram. Since the motion of (' is always along a
straight line, then its acceleration can be determined by taking the
time derivative of its velocity, which gives

a d'UG dw
L e
7 dt  dt
ag = ar (2) Ans.

Acceleration Equation. The magnitude and direction of a, is
unknown, Fig. 16-28c.

Az = A4 R 4 e rGlr'A = mzl'ijA
ari = (ag)d + (a4),j + (—ak) X (rj) — *(7j)

Evaluating the cross product and equating the i and j components
yields

(@)= 1) Ans. (c)
(ag)y = w'r Ans. Fig. 16-28

NOTE: The results, that v = wr and ag = ar, can be applied to any
circular object. such as a ball. cylinder. disk, etc., that rolls without
slipping. Also, the fact that a4 = w’r indicates that the instantaneous
center of zero velocity, point A, is not a point of zero acceleration.
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EXAMPLE |16.16

The spool shown in Fig. 16-29a unravels from the cord, such that at
the instant shown it has an angular velocity of 3 rad/s and an angular
acceleration of 4 rad/s®. Determine the acceleration of point B.

SOLUTION | (VECTOR ANALYSIS)
The spool “appears™ to be rolling downward without slipping at point
A. Therefore, we can use the results of Example 16.15 to determine
the acceleration of point G.1.e.,

ag = ar = (4 rad/s?)(0.5 ft) = 2 ft/s?
We will apply the acceleration equation to points (G and 5.

w = 3rad/s
= 4 1ad/s? Kinematic Diagram. Point B moves along a curved path having an
unknown radius of curvature.® Its acceleration will be represented by
its unknown x and y components as shown in Fig. 16-29b.

(a)
Acceleration Equation.
dg = dg + @ X rB,-"G =3 LUEI'BJ,.'G
f (a)dd + (ap)yj = =2 + (—4k) x (0.75)) — (3)*(0.75))

Equating the i and j terms, the component equations are

(ag),
(ag), = 4(0.75) = 3 ft/s* — (1)
(ag)y = —2 — 6.75 = —8.75ft/s* = 875 f/s* | (2)
o= zi:ﬁsz y The magnitude and direction of ag are therefore
e Lx ag = V(3 + (8.75)% = 9.25 fit/s? Ans
o # = tan™! 8';5 =I1L1Y 5% Ans.
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EXAMPLE |16.16 CONTINUED

SOLUTION Il (SCALAR ANALYSIS)

This problem may be solved by writing the scalar component
_ equations directly. The kinematic diagram in Fig. 16-29¢ shows the
relative-acceleration components (ag,g); and (agg),. Thus,
i B (ag6) = arpc ag = ag + (agc) + (agic)n

1 @6, = «’5/ [(‘E)x} L {(ﬂ?)y}
_ [2 fzfsz} N [4 rad/s? (0.75 l’t)] N [(3 rad/s};(t}.?.ﬁ ft)}

—_—
/ w=3rad/s
7w o =4rad/s The x and y components yield Eqgs. 1 and 2 above.

(©) *Realize that the path’s radius of curvature p is not equal to the radius of the spool

since the spool is not rotating about point G. Furthermore, p is not defined as the

Fig. 16-29 distance from A (/C) to B, since the location of the /C depends only on the velocity
of a point and not the geometry of its path.
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EXAMPLE [16.17

The collar C in Fig. 16-30a moves downward with an acceleration of
1 m/s%. At the instant shown. it has a speed of 2 m/s which gives links
CB and AB an angular velocity wap = wep = 10rad/s. (See
Example 16.8.) Determine the angular accelerations of CB and AB al
this mstant.

le p=10rad/s
A

02 m

Wep =
10 rad/s

| 0.2m |

(a)
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EXAMPLE |16.17 CONTINUED

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. The kinematic diagrams of both links A B and
CB are shown in Fig. 16-30b. To solve, we will apply the appropriate
kinematic equation to each link.

Acceleration Equation.
Link AB (rotation about a fixed axis):

dp — ¥ 4R X I'g — (u_rquI'B
ag = (aspk) X (—0.2§) — (10)3(-0.2j)
dg = U.ZLHABi + 20j

Note that ag has n and { components since it moves along a circular

path.
Link BC (general plane motion): Using the result for ag and applying )
Eq. 16-18, we have Fig. 16-30

ag = ac + acp X Igc — WERB/C
0.2c 45 + 20j = —1j + (acsk) X (0.2i — 02f) — (10)%(0.2i — 0.2))

02a4p1 + 20j = —1j + 02acpj + 0.2acz — 20i + 20j

Thus,
DBeee — (1 Bersay—90
20 = —1 + 02acg + 20
Solving,
acg = Srad/s?d Ans.
asp = —95 rad/s? = 95 rad/s*D Ans.
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EXAMPLE |16.18

The crankshaft AB turns with a clockwise angular acceleration of
20 rad/s%, Fig. 16-31a. Determine the acceleration of the piston at the
instant AB is in the position shown. At this instant w4p = 10 rad/s
and wgc = 2.43 rad/s (See Example 16.13.)

0.75 ft -13.6°
SOLUTION (VECTOR ANALYSIS)
/| —| wpc= 243 rad/s

Kinematic Diagram. The kinematic diagrams for both AB and BC

are shown in Fig. 16-31b. Here a. 1s vertical since C moves along a
w,p= 10 rad/s s : 25 &
= 20 rad /6 straight-line path.

0.25ft T\, Acceleration Equation. Expressing cach of the position vectors in
Cartesian vector form

(a) rp = {—0.25 sin 45°i + 0.25 cos 45°j} ft = {—0.177i + 0.177j} ft
re/p = {0.75sin 13.6% + 0.75 cos 13.6%} [t = {0.177i + 0.729j} It
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EXAMPLE [16.18 CONTINUED

Crankshaft AB (rotation about a fixed axis):
ap = ap X g — waplp
= (=20Kk) x (=0.177i + 0.177j) — (10)*(=0.177i + 0.177j)
= {21.21i — 14.14j} ft/s?

Connecting Rod BC (general plane motion): Using the result for ag
and noting that ac is in the vertical direction, we have

Ao

ac = ag + apc X Icp — WEBC'I'C,J'B
W C acj = 21210 — 14.14) + (apck) X (0.177i + 0.729f) — (243)%(0.177i + 0.729j)
y acj = 21.21i — 1414 + 0177 agcj — 0.729agci — 1.04i — 4.30j

coip 0 = 2017 — 0.729ap¢

113.6° _
0.75 cos 13.6° ft ~|~agpe ac = 0177age — 1845

- wpc = 2.43 rad o
Wik Lt Solving yields

B
QI 0, = 101ad)s age = 27.7rad/s*
0.25 cos 45° ft s a = 20rad/s? pe—-135 fl/S?‘ A
| pA x

NOTE: Since the piston is moving upward, the negative sign for ac

(b) indicates that the piston is decelerating, i.e..,ac = {—13.5j} ft/s. This

causes the speed of the piston to decrease until A5 becomes vertical,

Fig. 16-31 at which time the piston is momentarily at rest.
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EXAMPLE [16.19

At the instant ¢ = 60°, the rod in Fig. 16-33 has an angular velocity of
3rad/s and an angular acceleration of 2 rad/s. At this same instant,
collar C travels outward along the rod such that when x = 0.2 m the
velocity is 2m/s and the acceleration is 3 m/s®, both measured
relative to the rod. Determine the Coriolis acceleration and the
velocity and acceleration of the collar at this instant.

SOLUTION

Coordinate Axes. The origin of both coordinate systems is located
at point O, Fig. 16-33. Since motion of the collar is reported relative to
the rod. the moving x, y, z frame of reference is aftached to the rod.

Kinematic Equations.

Ve = Vo + @ X reio + (Yeio)ayz (1)
ac=ap + ) Xrep+ QX (X rgp) + 20 X (Ye0)xy: T (Ac/0)xyz
(2)

Fig. 16-33
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EXAMPLE |16.19 CONTINUED

It will be simpler to express the data in terms of i, j. k component
vectors rather than L J. K components. Hence,

Motion of Motion of C with respect
moving reference to moving reference
vo = 0 Icio = {0.2i} m
ap = 0 (Ycjo)xyz = {21} m/s
Q = {-3k} rad/s (8c/0)xy: = {31} m/s?

Q = {—2k} rad/s?
The Coriolis acceleration is defined as
acor = 20 X (Veioleyz = 2(—3Kk) X (2i) = {-12j} m/s* Ans.
This vector is shown dashed in Fig. 16-33. If desired, it may be resolved
into L. J components acting along the X and Y axes, respectively.
The velocity and acceleration of the collar are determined by
substituting the data into Egs. 1 and 2 and evaluating the cross products,
which yields
Ve = Vo + Q X Icio + (Veio)uy:
=0+ (—3k) x (0.2i) + 2i
= {2i — 0.6j} m/s Ans.
dc = dp I ﬂ X rCfO‘ + {} x (ﬂ > I'Cfro) + 20} X ("'C,fﬂ)xyz A {:HC;'O)I}‘Z
=0+ (—2k) X (0.2i) + (—3k) x [(—3k) X (0.2i)] + 2(—3k) x (2i) + 3i
=0 — 04 — 1.80i — 12j + 3i
= {1.20i — 12.4j} m/s? Ans.
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EXAMPLE |16.20

Y,y Rod AB, shown in Fig. 16-34, rotates clockwise such that it has an
angular velocity w 45 = 3 rad/s and angular acceleration a 45 = 4 rad/s?
B when 68 = 45" Determine the angular motion of rod DE at this instant.

—04m-——o /' The collar at C is pin connected to AB and slides over rod DE.

Hﬁix SOLUTION
Coordinate Axes. The origin of both the fixed and moving frames

& wap=3radfs of reference 1s located at D, Fig. 16-34. Furthermore, the x, vy, 2
0y = 4 rad/e reference is attached to and rotates with rod D FE so that the relative

f =45° motion of the collar is easy to follow.

Kinematic Equations.

Ve = Vp + Q X rgip + (Vesn)syz (1)

ac =ap + Q X reip + QX (Q X rep) + 20 X (Veup)xyz + (Ac/p)xyz
(2)

Fig. 16-34
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EXAMPLE |16.20 CONTINUED

All vectors will be expressed in terms of i, j, k components.

Motion of Motion of C with respect
moving reference to moving reference
vp =10 rc;p = {0.4i}m
ap =10 (Ye/p)xyz = (Ve/p)xy
) = _‘UDEk (aC,fD)xyz = (aC,n’D:]xyzi
Q= —apgk

Motion of C: Since the collar moves along a circular path of radius
AC. its velocity and acceleration can be determined using Egs. 16-9
and 16-14.
Ve = @wup X tepa = (—3Kk) X (04i + 0.4j) = {1.21 — 1.2j} m/s
Ac = ayp X Icrq — wgqsl'cm
= (—4k) X (0.4i + 0.4j) — (3)*(0.4i + 0.4)) = {-2i — 5.2j} m/s?
Substituting the data into Egs. 1 and 2, we have
ve = ¥p + X reip + (Yoip)xy:
1.2i — 12] =0+ {:_U:JDEI() * (U‘-I-i:} + {:vaD}xyzi
1.2i — 1.2j = 0 — 0.dwpg) + (Veip)xyd
(Ye/p)xyz = 1.2 m/s
wpg = 3rad/s) Ans.
ac=ap + O Xrgp + QO X (Q X rgp) + 20 X (Vep)ay: T (Ac/p)xyz
—2i — 5.2 = 0 + (—apgk) x (04i) + (-3k) x [(-3k) < (0.4i)]
+ 2(—3k) x (1.2i) + (ac/p)xy
—2i — 5.2 = —04dapgj — 3.61 — 7.2] + (ac/p) sy,
(acp)xyz = 1.6 m/s?
apg = —5rad/s? = 5rad/s?D Ans.

Engineering _Mechanics: Dynamics, Twelfth Edition
mmmmea Russell C. Hibbeler



EXAMPLE |16.21

Planes A and B fly at the same elevation and have the motions shown
in Fig. 16-35. Determine the velocity and acceleration of A as
measured by the pilot of B.

SOLUTION

Coordinate Axes. Since the relative motion of A with respect to the
pilot in B is being sought, the x, y, z axes are attached to plane B,
Fig. 16-35. At the instant considered. the origin B coincides with the
origin of the fixed X, Y, Z frame.

Kinematic Equations.

Vva=vp+ Q@ X ryp + (Ya/B)ry: (1)
as=ag+ O X Pap + X () X ryp) + 20 X (Vag)ryz: T (84/8)xyz
(2)

Motion of Moving Reference:
vg = {600j} km/h

2 2
v _ (600 :
= — = = 900 km/h
ag = (ag), + (ag), = {900i — 100j} km/h?
vg 600 km/h
= e = 1.5k} r:
Q p e 1.5 rad/h) Q = {—1.5k} rad/h
; a 100 km/h? ;
g - a8k _ M _ s rad/h2d Q= {025k} rad/h?

p 400 km
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EXAMPLE |116.21 CONTINUED

Motion of A with Respect to Moving Reference:
Pap = {—4tkm (Vaplay: =7 (24/B)xys =7 o
Substituting the data into Eqs. | and 2. realizing that v, = {700j }km/h f
and ay = {50j} km/h?, we have
V4 = vg + )5 Ta/p -+ (‘?A,?B}xyz ?Eﬂkmjh‘
700§ = 600j + (—1.5k) X (—4i) + (Va/B)xyz T ﬁﬂﬂkmth Iilmkmﬂﬁ
(T"A;B}xyz = {94j} km/h Ans. f”‘ S Tas .I.B ij/l—
a, = ag+ ) x rA;’B -] % {ﬂ * r.A,."'B) 120 x (‘:AIB)I_‘FZ e {HA,J'B)xyz .“'«.. ""f’jm km
50§ = (900i — 100§) + (0.25k) % (—4i) 50 km/m? [~ 4Km
+ (—1.5k) X [(—1.5k) X (—4i)] + 2(—1.5Kk) X (94j) + (24/8)xyz
(24/8)xyz = {—1191i + 151j} km/h? Ans.
NOTE: The solution of this problem should be compared with that o
of Example 12.26, where it is seen that (vgj4)yy; # (Va/B)sry, and
(aBjA)xyz = (aA,fB)xyZ'
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