EXAMPLE |15.1

The 100-kg stone shown in Fig. 15—4a is originally at rest on the
smooth horizontal surface. If a towing force of 200 N, acting at an
angle of 45°, 1s applied to the stone for 10 s, determine the final
velocity and the normal force which the surface exerts on the stone
during this time interval.

SOLUTION
This problem can be solved using the principle of impulse and
momentum since it involves force, velocity, and time.

Free-Body Diagram. Sce Fig. 15-4b. Since all the forces acting are
constant, the impulses are simply the product of the force magnitude

and 10s [I = F.(#, — #;)]. Note the alternative procedure of drawing Y
the stone’s impulse and momentum diagrams, Fig. 15-4c. ;
Principle of Impulse and Momentum. Applying Eqgs. 15-4 yields g

f
(%) moy+ 3 [ Fedt = miwy,

1
0 + 200 N cos 45°(10s) = (100 kg)v,
v, = 14.1 m/s Ans.
I

(+1) m(vy), + Ef Fydt = m(v,), (b)

f

0+ Nc(10s) — 981 N(10s) + 200 N sin 45°(10s) = 0
Ny = 840N Ans.
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EXAMPLE |15.1 CONTINUED

NOTE: Since no motion occurs in the y direction, direct application of
the equilibrium equation X F, = 0 gives the same result for Ne.

981 N (105s) 200N (10 s)

(100 kg) v,

N (105)

(c)

Fig. 15-4
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EXAMPLE |15.2

The 50-Ib crate shown in Fig. 15-5a is acted upon by a force having a
variable magnitude P = (20¢) Ib. where 1 is in seconds. Determine the
crate’s velocity 2 s after P has been applied. The initial velocity is
v; = 3 {t/s down the plane, and the coefficient of kinetic friction
between the crate and the plane is p, = 0.3.

SOLUTION

Free-Body Diagram. See Fig. 15-5b. Since the magnitude of force
P = 20¢ varies with time, the impulse 1t creates must be determined
by integrating over the 2-s time interval.

Principle of Impulse and Momentum. Applying Eqgs. 15-4 in the x
direction, we have

L5
(+¢) m(vy); + lf F.dt = m(v,),
f

25

50 1b 2
R A A l 20t di — 0.3Ne(2's) + (501b) sin 30°(2s)

_ S0
32.2ft/s?

4.658 + 40 — 0.6Ng + 50 = 1.553v,
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EXAMPLE |15.2 CONTINUED

The equation of equilibrium can be applied in the y direction. Why?

TNEE, =0 Ne —50cos3071b =0
Solving,
Nc=43301b
v, = 421 /s Ans.
NOTE: We can also solve this problem using the equation of motion.
(b) From Fig. 15-5b,
Fig. 15-5 +/2F, = ma,; 20t — 0.3(43.30) + 50 sin 30° = ,;) a
a = 12.88t + 7.734
Using Kinematics
v 2s
+sdv = adit, f dv = / (12.88t + 7.734)dr
3 ft/s 0
v = 442 ft/s Ans.

By comparison., application of the principle of impulse and
momentum eliminates the need for using kinematics (a = dv/dt) and
thereby yields an easier method for solution.
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EXAMPLE |15.3

Blocks A and B shown in Fig. 15-6a have a mass of 3 kg and 5 kg,
respectively. If the system is released from rest, determine the velocity
of block B in 6 s. Neglect the mass of the pulleys and cord.

SOLUTION

Free-Body Diagram. Sece Fig. 15-6b. Since the weight of each block
1s constant, the cord tensions will also be constant. Furthermore. since
the mass of pulley D is neglected, the cord tension T4 = 2Tg. Note
that the blocks are both assumed to be moving downward in the
positive coordinate directions, s4 and sg.

—Datum

Principle of Impulse and Momentum.

Block A:
(+1) m(vs), + E[ F,dt = m(vy),
0 — 2Tp(6's) + 3(9.81)N(65) = (3kg)(v4), (1) .
Block B: f X
(‘I‘L} m{’L’B)l e E\/r Fydf = m('ﬂﬂ)g TT /
0 + 5(9.81) N(6s) — Tg(6s) = (5 kg)(vg)a (2) T
Ty =2y
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EXAMPLE |15.3 CONTINUED

Kinematics. Since the blocks are subjected to dependent motion,
the velocity of A can be related to that of B by using the kinematic
analysis discussed in Sec. 12.9. A horizontal datum is established
through the fixed point at C, Fig. 15-6a. and the position coordinates,
54 and sg, are related to the constant total length [ of the vertical
segments of the cord by the equation

ZSA + S = /
Taking the time derivative yields
Z'UA = —Ug (3)

As indicated by the negative sign, when B moves downward A moves
upward. Substituting this result into Eq. 1 and solving Eqs. 1 and 2 yields

(vg); = 35.8m/s | Ans.
Tg = 192N
NOTE: Realize that the positive (downward) direction for v4 and vg

1s consistent in Figs. 15-6a and 15-6b and in Eqgs. 1 to 3. This is
important since we are seeking a simultaneous solution of equations.

3
va l :

3(9.81) N

g T
5(9.81) N

(b)

Fig. 15-6
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EXAMPLE |15.4

The 15-Mg boxcar A is coasting at 1.5 m/s on the horizontal track
when it encounters a 12-Mg tank car B coasting at 0.75 m/s toward it
as shown in Fig. 15-8a. If the cars collide and couple together,
determine (a) the speed of both cars just after the coupling, and
(b) the average force between them if the coupling takes place in 0.8 s.

1.5
_15mjs 0.75 m/s

o cn ) 2 1

A

(a)

SOLUTION

Part (a) Free-Body Diagram.* Here we have considered both cars
as a single system, Fig. 15-8b. By inspection, momentum is conserved
in the x direction since the coupling force F is internal to the system
and will therefore cancel out. It is assumed both cars, when coupled,
move at v, in the positive x direction.

Conservation of Linear Momentum.
(5) my(vs); + mg(vg) = (my + mg)v;
(15 000 kg)(1.5 m/s) — 12 000 kg(0.75 m/s) = (27 000 kg)v,

v, = 0.5m/s — Ans.

PEARSON
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EXAMPLE |15.4 CONTINUED

: ¥ Part (b). The average (impulsive) coupling force. F,,. can be
determined by applying the principle of linear momentum to either
one of the cars.

Free-Body Diagram. As shown in Fig. 15-8¢, by isolating the boxcar
the coupling force is external to the car.

Principle of Impulse and Momentum. Since [Fdr = Fayp A1
= Fo,(0.85), we have

() mA(?»’A)lJFE]FdF:mAUz
(15000 kg)(1.5m/s) — F,,(0.8s) = (15000 kg)(0.5 m/s)
F,, = 18.8kN Ans.

NOTE: Solution was possible here since the boxcar’s final velocity
was obtained in Part (a). Try solving for F,,, by applying the principle
of impulse and momentum to the tank car.

*Only horizontal forces are shown on the free-body diagram.
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EXAMPLE |15.5

The 1200-1b cannon shown in Fig. 15-Y¢ fires an 8-1b projectile with a
muzzle velocity of 1500 ft/s relative to the ground. If firing takes place
in 0.03 s, determine (a) the recoil velocity of the cannon just after
firing, and (b) the average impulsive force acting on the projectile. The
cannon support is fixed to the ground. and the horizontal recoil of the
cannon is absorbed by two springs. (a)

Recoil spring

SOLUTION

Part (a) Free-Body Diagram.* As shown in Fig. 15-9b, we will
consider the projectile and cannon as a single system, since the
impulsive forces, F, between the cannon and projectile are internal to
the system and will therefore cancel from the analysis. Furthermore,
during the time Af = 0.03 s, the two recoil springs which are attached
Lo the support each exert a nonimpulsive force Fg on the cannon. This
is because At is very short, so that during this time the cannon only
moves through a very small distance s. Consequently, F; = ks ~ 0,
where k& 1s the spring’s stiffness. Hence it can be concluded that
momentum for the system is conserved in the horizontal direction.
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EXAMPLE |15.5 CONTINUED

Conservation of Linear Momentum.

(5) m(ve)y + my(vp); = —me(ve); + mp(,),

1200 1b S Ib
Jbhime [ i ek o— = 1500 H/s
(32.2 fl,fsz){ 2 (32_2 ft/sz)( /s)

(v.), = 10ft/s « Ans.

Part (b). The average impulsive force exerted by the cannon on the
projectile can be determined by applying the principle of linear
impulse and momentum to the projectile (or to the cannon). Why?

Principle of Impulse and Momentum. From Fig. 15-9¢, with

[Fdt = F,,At = F,,,(0.03), we have
(i& ) m(vp); + E/Fdr = m(vp); v,
8 1b ;
0 + Faye(0.035) = (—)(150{] ft/s) L

32.2 ft/s?
e 12.4(10%) 1b = 12.4 kip Ans.
NOTE: If the cannon is firmly fixed to its support (no springs), the Fig. 15-9
reactive force ol the support on the cannon must be considered as an
external impulse to the system, since the support would allow no
movement of the cannon.

#*Only horizontal forces are shown on the free-body diagram.
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EXAMPLE | 15.6

Al 7 The bumper cars A and B in Fig. 15-10a each have a mass of 150 kg
and are coasting with the velocities shown before they freely collide

head on. If no energy i1s lost during the collision, determine their
velocities after collision.

(g =3mis (vg)y =2m/s

SOLUTION

Free-Body Diagram. The cars will be considered as a single system.
The [ree-body diagram is shown in Fig. 15-105b.

(a)

Conservation of Momentum.

(5) m4(vy)) + mp(vg); = my(vy)y + mp(vg)s
(150 kg)(3 m/s) + (150 ke)(=2 m/s) = (150 ke)(w,), + (150 kg)(vg),
(va)2 =1 — (vB)2 (1)
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EXAMPLE | 15.6 CONTINUED

150(9.81) N 150(9.81) N Conservation of Energy. Since no energy is lost, the conservation
of energy theorem gives

h+WN=5L1Y%

1 1 1 1
SmaAl + Smp(vp)f +0 = Imu(va); + Smp(vp) + 0

1 gt e - 1k
(b) ?(150 kg)(3 m/s)” + 3(130 kg)(2 m/s)* + 0 = ?{150 ke)(v4)3

Fig. 15-10 3 é(lSD g lsds 24
(va); + (vp)i = 13 (2)
Substituting Eq. (1) into (2) and simplifying, we get
(vg)i — (vg)y — 6 =0
Solving for the two roots,
(vg), = 3 m/s and (vg), = —2m/s

Since (vg); = —2 m/s refers to the velocity of B just before collision,
then the velocity of B just after the collision must be

(vg) = 3m/s — Ans.

Substituting this result into Eq. (1), we obtain

(va)2 =1 —=3m/fs = —2m/s = 2 m/s « Ans.
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EXAMPLE |15.7

An 800-kg rigid pile shown in Fig. 15-11a is driven into the ground using
a 300-kg hammer. The hammer falls from rest at a height y, = 0.5 m and
strikes the top of the pile. Determine the impulse which the pile exerts on
the hammer if the pile is surrounded entirely by loose sand so that after
striking, the hammer does nof rebound off the pile.

SOLUTION

Conservation of Energy. The velocity at which the hammer strikes the
pile can be determined using the conservation of energy equation applied
to the hammer. With the datum at the top of the pile. Fig. 15— 1a, we have

T{_}+VD:T1+VI

1
EmH(vH)% + Whyo = E’”H(“H)% + Way
1
0 + 300(9.81) N(0.5 m) = —(300kg) (vm)} + 0
(vg) = 3.132 m/s ¥p=0.5m
Free-Body Diagram. From the physical aspects of the problem. the —Jp— it
free-body diagram of the hammer and pile, Fig. 15-11b, indicates that Sand

during the short time from just before to just after the collision, the
weights of the hammer and pile and the resistance force F; of the sand
are all nonimpulsive. The impulsive force R is internal to the system
and therefore cancels. Consequently, momentum is conserved in the
vertical direction during this short time,
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EXAMPLE |15.7 CONTINUED

Conservation of Momentum. Since the hammer does not rebound
off the pile just after collision, then (vg ), = (vp); = v,.

(+4) my(vg)) + mp(vp); = mpv, + mpv,
(300 ke)(3.132 m/s) + 0 = (300 k), + (800 ke)v,
v, = 0.8542 m/s

Principle of Impulse and Momentum. The impulse which the pile
imparts to the hammer can now be determined since v, 1s known.

From the free-body diagram for the hammer, Fig. 15-11¢, we have T
t; F,=0
{-I—L) mH(UH}l + E] Fydt = mgyt, (b)
51
(300 kg)(3.132 m/s) — /R dt = (300 kg)(0.8542 m/s) Wi =0
v
fR di = 683N -s Ans.
R
NOTE: The equal but opposite impulse acts on the pile. Try finding this ()
impulse by applying the principle of impulse and momentum to the pile. Fig, 1511
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EXAMPLE |15.8

The 1.5-Mg car in Fig. 15-12a moves on the 10-Mg barge to the left with
a constant speed of 4 m/s, measured relative to the barge. Neglecting
water resistance, determine the velocity of the barge and the
displacement of the barge when the car reaches point B. Initially, the
car and the barge are at rest relative to the water.

(a) SOLUTION

Free-Body Diagram. If the car and the barge are considered as a
single system, the traction force between the car and the barge
becomes internal to the system, and so linear momentum will be
conserved along the x axis, Fig. 15-125b.

r— Conservation of Momentum. When writing the conservation of
momentum equation, it is important that the velocities be measured
from the same inertial coordinate system, assumed here to be fixed.
We will also assume that as the car goes Lo the left the barge goes o
the right, as shown in Fig. 15-12b.

(b) Applying the conservation of linear momentum to the car and barge
Fig. 15-12 system,
[5"—) 0+ 0=muu, — mpvy
0 = (1.5(10°) kg)v, — (10(10°) kg)v,
1.5v, — 100, = 0 (1)
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EXAMPLE |15.8 CONTINUED

Kinematics. Since the velocity of the car relative to the barge is
known, then the velocity of the car and the barge can also be related
using the relative velocity equation.
(=) Ve = Vp + Ve
Ve = —¥, + 4m/s (2)

Solving Egs. (1) and (2),

vy = 05217 m/s = 0.522 m/s — Ans.

v, = 3478 m/s <

The car travels 5., = 20 m on the barge at a constant relative speed of
4 m/s. Thus, the time for the car to reach point B is

Seip = Ugip I
20m = (4m/s)t
f =958

The displacement of the barge is therefore

(5) sp = Uyt = 05217 m/s(5s) = 2.6l m — Ans.
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EXAMPLE |15.9

The bag A, having a weight of 6 Ib. is released from rest at the position

--.r wA # = 0°, as shown in Fig. 15-16a. After falling to 8 = 90°, it strikes an
| /0 | 18-1b box B. If the coefficient of restitution between the bag and box
/ is e = 0.5, determine the velocities of the bag and box just after
: e N f;" impact. What is the loss of energy during collision?
| 4 SOLUTION

This problem involves central impact. Why? Before analyzing the
mechanics of the impact, however, it is [irst necessary to obtain the
velocity of the bag just before it strikes the box.

Conservation of Energy. With the datum at # = 0°, Fig. 15-16b,

we have
I, +W=1T +V

-Line of impact

— -%T%——Datum 1( o 1b ) 2
= O+0=—[——— l(pa); = 61b{31t); va)1 = 13.90 ft/s
0 i 2\ 329 [usg (va)i (31t) (Vah /
T _,,rg ok Conservation of Momentum. After impact we will assume A and B
&z ravel to the left. Applying the conservation of momentum to the
o system, Fig. 15-16c¢, we have
‘ iﬂ® (<) mp(vp); + ma(v4)1 = mp(Vp)y + ma(va),
61b 18 1b 6 1b
0+ |————= J(13.90ft)s)=| —— l(vgli +| —= |(v
ik X (32.2 ft,/sz){ /8) (32.2 t‘r/s?)( 5)> (32.2 ftfsz){ 4):
& (v4)2 = 13.90 — 3(vp), (1)
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EXAMPLE |15.9 CONTINUED

Coefficient of Restitution. Recalizing that for separation to occur
vk after collision (vg); = (v4)2, Fig. 15-16¢, we have
((i) _ (w)2 — (va)2 0.5 = ()2 — (va)
.5 & (va) — (vg);T ~  13.90ft/s — 0
‘BN = N ;
B & (a)2 = (vg)2 — 6.950 (2)
(v); = 13.90 1t /s Solving Eqgs. 1 and 2 simultancously yields
Just before impact (v4)2 = —1.74ft/s = 1.74 ft/s— and (vg), = 521 ft/s <« Ans.
. Loss of Energy. Applying the principle of work and energy to the
bag and box just before and just after collision, we have
AU, =1 - T3;
& 1/ 181b 1/ 6lb
&) U 5 = || ——— (521 ft/s)? +—(—) 1.74 ft/s 2]
B &) = [2 (32.2 fl'/sz)( /S35 ft/s2 ( /%)
(Va)a (¥a)a — [l(—ﬁ b .})(13.9 fl/ﬂ}z]
Just after impact 2\32.2ft/s*
(c) 2U;_,=—-1011t-1b Ans.
Fig. 15-16 NOTE: The energy loss occurs due to inelastic deformation during the
collision.
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EXAMPLE 115.10

Ball B shown in Fig. 15-17a has a mass of 1.5 kg and is suspended
from the ceiling by a 1-m-long elastic cord. If the cord is strefched Ty¥itiin @ )
downward 0.25 m and the ball is released from rest, determine how '

far the cord stretches after the ball rebounds from the ceiling. The
stiffness of the cord is k = 800 N/m. and the coelficient of restitution
between the ball and ceiling is e = 0.8. The ball makes a central
impact with the ceiling.

SOLUTION el
First we must obtain the velocity of the ball just before it strikes the

ceiling using energy methods, then consider the impulse and momentum

between the ball and ceiling, and finally again use energy methods to

determine the stretch in the cord.

k=800N/m| y=(1+025m

® =

Conservation of Energy. With the datum located as shown in
Fig. 15-17a, realizing that initially y = y = (1 + 0.25) m = 1.25 m,
we have
TEI = I’% = TI S “71 iy
1

Em('ﬂg)ﬁ — Wxayw + %ksz = %m{vﬂﬁ + 0

0 — 1.5(9.81)N(1.25 m) + 3(800 N/m)(0.25 m)? = (1.5 kg)(vs)3 z
(vg); = 2.968 m/s |

The interaction of the ball with the ceiling will now be considered using

the principles of impact.* Since an unknown portion of the mass of the "«‘“’B}Zl T("’B}l =2.97mfs
ceiling is involved in the impact, the conservation of momentum for the

ball—ceiling system will not be written. The “velocity™ of this portion of ®)

ceiling is zero since it (or the earth) are assumed to remain at rest both
before and after impact.
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EXAMPLE [15.10 CONTINUED

Coefficient of Restitution. Fig. 15-175.

(2g)2 — (Va)2 (vp)2 — 0
() o= ; 0.8 =

(JUA)I —F (JUB)I 0 — 2.968 IT]/’S

(vg), = —2.374m/s = 2.374m/s |

Conservation of Energy. The maximum stretch s; in the cord can
be determined by again applying the conservation of energy equation @ Dt
to the ball just after collision. Assuming that y = y; = (1 + s3) m. @B “
Fig. 15-17¢, then

7m(vp)3 + 0 = ym(vp); — Wpys + 7ks3 Q@

F(1.5kg)(2.37m/s)? = 0 — 9.81(1.5) N(1 m + s5) + 5(800 N/m)s? (©)
400s3 — 14.715s; — 18.94 = 0
Solving this quadratic equation for the positive root yields Fig. 15-17
5§y = 0.237 m = 237 mm Ans.

* The weight of the ball is considered a nonimpulsive force.
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EXAMPLE |115.11

y Two smooth disks A and B, having a mass of 1 kg and 2 kg,
Wady =1 o respectively, collide with the velocities shown in Fig. 15-18a. If the
coefficient of restitution for the disks is e = (.75, determine the x and

= y components of the final velocity of each disk just after collision.

X

Line of ilnpa.ct SOLUTION
This problem involves obligue impact. Why? In order to solve it, we

(i =3mp ~~Plane of contact have established the x and y axes along the line of impact and the
plane of contact. respectively, Fig. 15-18a.
(a) Resolving each of the initial velocities into x and y components,
we have

(Vax)1 = 3c0s30° = 2598 mfs (v4y); = 3sin30° = 1.50m/s
(V)1 =—1cos 45° = —0.7071 m/s (vgy); = —1 sin 45°= —0.7071 m/s

The four unknown velocity components after collision are assumed (o
act in the positive directions, Fig. 15-18b. Since the impact occurs in the
x direction (line of impact). the conservation of momentum for both
disks can be applied in this direction. Why?!
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EXAMPLE 115.11 CONTINUED

M4V 4 )y —[Fdr Ma(Vay)o

—@+@—=0—

T Conservation of “x" Momentum. In reference to the momentum
mA(Yay)1 Ma(Vay)2 diagrams, we have
’ } (5) my(Va )1 + mp(vpy)y = ma(vay), + mp(vpy)s
HiglV
G 1 kg(2.598 m/s) + 2 kg(—0.707 m/s) = 1 kg(vay)s + 2 ke(vge)a
(v TFdr Mg Ve g
p Bx)i.-g- <y (Vax)2 T 2(vps)r = 1.184 (1)
1 Coefficient of Restitution (x).
i L) e (¥Bx)2 = (Vax)2. 75 = (Vpx)2 = (Vax)
(b) (ax)i — (VBe)1 2598 m/s = (=0.7071 m/s)

(vBx)2 — (vax)2 = 2479 (2)
Solving Eqgs. 1 and 2 for (v,4,), and (vg, ), yields
(wa)z — o 1a2h m,/S = 1.26 m;'s-c— (va)E =29 m/fs —  Ans

I

¥
(V4)2 =196 m/s Conservation of “y” Momentum. The momentum of each disk is
conserved in the y direction (plane of contact), since the disks are
smooth and therefore no external impulse acts in this direction. From
x  Fig. 15-18b,

("‘T) m.{‘l(vAy}]: = mA(vA},)g; (?.JAJ,)Q = 1.50 ITlftS T Ans.

(+1) mp(vgy): = mg(vp,)s: (vsy), = —0.707 m/s = 0.707 m/s | Ans.

By = 30.1°

(vg) =141l m/s

(c)
NOTE: Show that when the velocity components are summed

Fig. 15-18 : ; G e
vectorially, one obtains the results shown in Fig. 15-18c.
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EXAMPLE |15.12

The box shown in Fig. 15-22a has a mass m and travels down the
smooth circular ramp such that when it is at the angle # it has a speed
v. Determine its angular momentum about point O at this instant and
the rate of increase in its speed, i.e., a;.

in @
o, st

Fig. 15-22
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EXAMPLE |15.12 CONTINUED

SOLUTION
Since v is tangent to the path, applying Eq. 15-12 the angular
momentum is

Hp = rmv) Ans.
The rate of increase in its speed (dv/dt) can be found by applying
Eq. 15-15. From the free-body diagram of the box, Fig. 15-225. it can

be seen that only the weight W = mg contributes a moment about
point . We have

: . d
C+XMp = Hp: mg(rsind) = E{rm’u)

Since r and /m are constant,

sinf = mE
mgr = F df
dv
— = psinf Ans.
o g sin ns

NOTE: This same result can, of course, be obtained from the equation
of motion applied in the tangential direction, Fig. 15-22b. i.e.,

_ d
2 =i mg sin f = m(d—?)
dv
= gsin# Ans.
i g sin ns
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EXAMPLE 115.13

The 1.5-Mg car travels along the circular road as shown in Fig. 15-24a.
If the traction force of the wheels on the road is F = (150¢%) N, where
f is in seconds, determine the speed of the car when t = 5. The car
initially travels with a speed of 5 m/s. Negect the size of the car.
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EXAMPLE |15.13 CONTINUED

SOLUTION

Free-Body Diagram. The free-body diagram of the car is shown in
Fig. 15-24b. If we apply the principle of angular impulse and
momentum about the z axis, then the angular impulse created by the
weight, normal force, and radial frictional force will be eliminated
since they act parallel to the axis or pass through it.

Principle of Angular Impulse and Momentum. z
4]
(H,) + Ef M.dt = (H,), W = 1500 (9.81)N
t 2
r=100m x

t5
rm.(v.); + / rF dt = rm.(v.);
I

3s
(100 m)(1500 kg)(5 m/s) + (100 m)[(150¢2) N] dt F = (150A)N
0
N
= (100 m) (1500 kg)(v.),
|3s
750(10%) + 500083 = 150(10%)(v,), .
0
(v.), = 9.17 1’1'1/'(5 Ans. Fig. 15-24
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EXAMPLE |15.14

The 0.8-1b ball B, shown in Fig. 15-25a, is attached to a cord which
passes through a hole at A in a smooth table. When the ball is
r1 = 1.75 ft from the hole, it is rotating around in a circle such that its
speed is v; = 4 {t/s. By applying the force F the cord is pulled
downward through the hole with a constant speed w». = 6 ft/s.
Determine (a) the speed of the ball at the instant it is r, = 0.6 ft from
the hole, and (b) the amount of work done by F in shortening the
radial distance from r; to r,. Neglect the size of the ball.

SOLUTION

Part (a) Free-Body Diagram. As the ball moves from r; to r,.
Fig. 15-25b.the cord force F on the ball always passes through the z axis,
and the weight and Ng are parallel to it. Hence the moments, or angular
impulses created by these forces, are all zero about this axis. Therefore,
(2) angular momentum is conserved about the z axis.
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EXAMPLE |15.14 CONTINUED

Conservation of Angular Momentum. The ball’s velocity v, is
resolved into two components. The radial component, 6 ft/s. is known:
however, it produces zero angular momentum about the z axis. Thus,

rimgv; = ramgih

1.75 ft(o'a_lhz) 4ft/s = 0.6 ft(o'glhz)v'z
32.2 ft/s 322 ft/s

vy = 11.67 ft/s

The speed of the ball is thus

v = \/ (1167 11/s)* + (6 ft/s)?
= 13.1 ft/s

Part (b). The only force that does work on the ball is F. (The normal
force and weight do not move vertically.) The initial and final kinetic
energies of the ball can be determined so that from the principle of
work and energy we have

T]_ + EUI_Q = Tz
1/ 081b 1/ 081b
| —=——= )@ f/s)> + U :—(—) 13.1 ft/s)?
2(32.2 fr,fsz){ [+ Uk =3\ ft/s? { /%)

Ur = 1.941t-1b Ans.

NOTE: The force F is not constant because the normal component of
acceleration, a, = v*/r,changes as r changes.
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EXAMPLE [15.15

The 2-kg disk shown in Fig. 15-26a rests on a smooth horizontal z
surface and 1s attached to an elastic cord that has a stiffness Y
= e : k.=20N/m
k. = 20 N/m and is initially unstretched. If the disk is given a velocity i (vp); =1.5m/s

(vp); = 1.5 m/s, perpendicular to the cord, determine the rate at
which the cord 1s being stretched and the speed of the disk at the
instant the cord is stretched 0.2 m.

SOLUTION

Free-Body Diagram. After the disk has been launched, it slides
along the path shown in Fig. 15-26b6. By inspection. angular
momentum about point O (or the z axis) is conserved, since none of
the forces produce an angular impulse about this axis. Also, when
the distance is 0.7 m. only the transverse component (vp), produces
angular momentum of the disk about O.

Conservation of Angular Momentum. The component (vp), can
be obtained by applying the conservation ol angular momentum
about O (the z axis).

(Ho)1 = (Ho)z
rimp(¥p); = ramp(¥p)s
0.5m (2kg)(1.5m/s) = 0.7 m(2kg)(vp),
(vp), = 1.071 m/s

(b)
Fig. 15-26
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EXAMPLE |15.15 CONTINUED

Conservation of Energy. The speed of the disk can be obtained by
applying the conservation of energy equation at the point where the
disk was launched and at the point where the cord 1s stretched 0.2 m.

Tl + Vl = Tz + VQ
smp(vp)i + kxt = gmp(vp); + kX3
22 kg)(1.5m/s)* + 0 = (2 kg)(vp)3 + 2(20N/m)(0.2 m)?
(vp), = 1.360 m/s = 1.36 m/s Ans.

Having determined (vp ), and its component (v ), the rate of stretch of
the cord. or radial component, (v} ), is determined from the Pythagorean
theorem,

(vp)2 = \/ (vp)i — (vp)3
= \/(1.360 m/s)? — (1.071 m/s)?
= 0.838 m/s Ans.
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EXAMPLE |15.16

Determine the components of reaction which the fixed pipe joint at A
exerts on the elbow in Fig. 15-28a. if water flowing through the pipe is
subjected to a static gauge pressure of 100 kPa at A. The discharge at
B is Qg = 0.2m?/s. Water has a density p,, = 1000 kg/m?, and the
waler-filled elbow has a mass of 20 kg and center of mass at G.

SOLUTION

We will consider the control volume to be the outer surface of the
elbow. Using a fixed inertial coordinate system, the velocity of flow at
A and B and the mass flow rate can be obtained from Eq. 15-27. Since
the density of water is constant. Qg = @4 = Q. Hence,

d -
(a) d_’? = p,@ = (1000 kg/m*)(0.2 m?/s) = 200 kg/s
0.2 m/s
JUB: Q fre= / 2 :2546“1/’31
Ag  #(0.05m)
0.2 m°/s

Ag (0.1 m)?
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EXAMPLE |15.16 CONTINUED

Free-Body Diagram. As shown on the free-body diagram of the
- control volume (elbow) Fig. 15-28b. the fixed connection at A exerts a
x\\\ resultant couple moment Mg and force components F, and F, on the

R elbow. Due to the static pressure of water in the pipe, the pressure
=N | force acting on the open control surface at A is Fy = psA 4. Since
R / N 1 kPa = 1000 N/m?,
Y 120(9.81) N B SR 2 2 5

Fy = psA, = [100(10°) N/m?][7(0.1 m)°] = 3141.6 N

Oc25en There is no static pressure acting at B, since the water 1s discharged at
B3 atmospheric pressure; i.¢., the pressure measured by a gauge at B is
equal to zero, pg = 0.

Equations of Steady Flow.

. d
5 3F, = (g, — va,): —F, + 31416 N = 200kg/s(0 — 6.37 m/s)

di
F, = 441 kN Ans.

Fig. 15-28

. d
+13F, = = (upy — v4,):— F, —20(9.81) N = 200 kg/s(~25.46 m/s — 0)

dt
F, = 490 kN Ans.
If moments are summed about point O, Fig. 15-28b, then F, . F,,, and
the static pressure Fy are climinated, as well as the moment of
momentum of the water entering at A. Fig, 15-28a. Hence,

) dm
C+EIMp = E(‘fcﬁ?’ﬁ — dpavy)

Mg + 20(9.81) N (0.125 m) = 200 kg/s[(0.3 m)(25.46 m/s) — 0]
My = 1.50KkN-m Ans.
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EXAMPLE |15.17

A 2-in.-diameter water jet having a velocity of 25 [t/s impinges upon a
single moving blade, Fig. 15-294. If the blade moves with a constant
velocity of 5 ft/s away from the jet, determine the horizontal and vertical
components of force which the blade is exerting on the water. What
power does the water generate on the blade? Water has a specific weight
of y,, = 62.4 Ib/ft?,

SOLUTION
Kinematic Diagram. Here the control volume will be the stream of
water on the blade. From a fixed inertial coordinate system.

Fig. 15-295. the rate at which water enters the control volume at A is 2 i{l —;ff
Yy = 2 I8
v, = {251} t/s N
The  relative-flow  velocity  within  the control volume s v, =251

Vijeo = Yw — Ve = 25i — 5i = {20i} ft/s. Since the control volume is @)
moving with a velocity of v, = {5i} ft/s. the velocity of flow at B
measured from the fixed x, v axes is the vector sum, shown in
Fig. 15-29b. Here,
¥p— Mgyt Yivicw va
= {5i + 20j} ft/s b
Thus, the mass flow of water ento the control volume that undergoes a f 5 o
momentum change is
dm 62.4 1V _ 3
— = pu(View)Aa = | === | (20)| 7| —= = 0.8456 slug/s
L A H
e
(b)
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EXAMPLE |15.17 CONTINUED

Free-Body Diagram. The free-body diagram of the control volume
is shown in Fig. 15-29¢. The weight of the water will be neglected in
the calculation, since this force will be small compared to the reactive
components F, and F,,.

Equations of Steady Flow.
dm ¥

2F ZE(\’B—VA) \—
—F,i + F,j = 0.8456(5i + 20j — 25i) X
Equating the respective i and j components gives .
F, = 0.8456(20) = 1691b « Ans. r_
F, = 0.8456(20) = 1691b | Ans. ‘:‘; ‘}'
The water exerts equal but opposite forces on the blade.
Since the water force which causes the blade to move forward Fig. 15-29

horizontally with a velocity of 5 ft/sis F, = 16.9 Ib, then from Eq. 14-10
the power is
16.9 Ib(5 ft/s)

550 hp/(ft - 1b/s)

P=F-v; = 0.154 hp
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EXAMPLE |15.18

The initial combined mass of a rocket and its fuel 1s m;. A total mass
m; of fuel is consumed at a constant rate of dm,/dt = ¢ and expelled
at a constant speed of u relative to the rocket. Determine the
maximum velocity of the rocket, i.c.. at the mnstant the fuel runs out.
Neglect the change in the rocket’s weight with altitude and the drag
resistance of the air. The rocket is fired vertically from rest.

SOLUTION

Since the rocket loses mass as it moves upward, Eq. 15-28 can be used
tor the solution. The only external force acting on the control volume
consisting of the rocket and a portion of the expelled mass is the
weight W, Fig. 15-33. Hence,

. dv dm, dv .
+T2F,_..u = ma — vgfed—;: W =m——uc [y

Engineering _Mechanics: Dynamics, Twelfth Edition
mmmmea Russell C. Hibbeler



EXAMPLE |15.18 CONTINUED

The rocket’s velocity is obtained by integrating this equation.

Atany given instant f during the flight. the mass of the rocket can be
expressed as m = mgy — (dm,/dt)t = m, — ct. Since W = mg. Eq. 1
becomes

d
—(my — ct)g = (my — cr)d—:: =

Separating the variables and integrating, realizing that v = Oatf = 0,
we have

v i
fdvz/(—uc —g)dr
i g \My — Ci
() -
=ulnl ——— | — 2
D )& @

Note that liftoff requires the first term on the right to be greater than
the second during the initial phase of motion. The time #' needed to

consume all the fuel is
(dme):’ t'
sy = =i
f dt

I = mf/(C

v=—uln(my —ct) — gt

Hence,

Fig. 15-33

Substituting into Eq. 2 yields

m gm
—D) i Ans.

v = uln
max ( C

mﬂ—mf
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EXAMPLE |15.19

ot

(a)

et

A chain of length /, Fig. 15-34a, has a mass m. Determine the magnitude
of force F required to (a) raise the chain with a constant speed v,.
starting from rest when y = 0; and (b) lower the chain with a constant
speed v, starting from rest when y = 1.

SOLUTION

Part (a). As the chain is raised, all the suspended links are given a
sudden downward impulse by each added link which is lifted off the
ground. Thus. the suspended portion of the chain may be considered as
a device which is gaining mass. The control volume to be considered is
the length of chain y which is suspended by F al any instant, including
the next link which is about to be added but 1s still at rest, Fig. 15-34b.
The forces acting on the control volume exclude the internal forces
P and —P, which act between the added link and the suspended
portion of the chain. Hence. X F,, = F — mg(y/I).

To apply Eq. 15-29, it is also necessary to find the rate at which mass is
being added to the system. The velocity v, of the chain is equivalent to
Vpyi- Why? Since v, is constant. dv./dt = 0 and dy/dt = v.. Inlegraling,
using the initial condition that y = Owhen# = 0, gives y = v.f. Thus, the
mass of the control volume at any instant is m., = m(y/l) = m(v.t/I),
and therefore the rate at which mass is added to the suspended chain is

dm; . ("Uc)
dar "™\

PEARSON
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EXAMPLE |15.19 CONTINUED

Applying Eq. 15-29 using this data, we have
d'ﬂc dmi

+TEF(:1] = m dr = U.Dﬁ?
Fi— mg(z) =0+ vim(ﬁ)
[ [
F
‘ Hence.
T % F = (m/l)(gy + ¥?) Ans.
Il Part (b). When the chain is being lowered. the links which are
% expelled (given zero velocity) do noi impart an impulse to the
) remaining suspended links. Why? Thus, the control volume in Part (a)
¥ will not be considered. Instead, the equation of motion will be used to
obtain the solution. At time  the portion of chain still off the floor is y.
v ma(=) The free-body diagram for a suspended portion of the chain i1s shown
b4 [ iy % =
;]J. in Fig. 15-34c. Thus,
1 é +1XF = ma; F—= mg(i) =0
(c) [
F =mg b4 Ans.
Fig. 15-34 [
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