Carnot Cycle Quiz Solution

1. A Carnot cycle is conducted using air contained in a cylinder-piston configuration as shown in the figure below. Initially, the system contains air at 25 deg C, 100 kPa and 0.01 m³. You may designate this as state 1. The system is first compressed isothermally until the volume is 0.002 m^3 . From that point, the system undergoes a polytropic compression process with exponent n=1.4 until the volume further reduces to 0.001 m^3 . After that the system undergoes an isothermal expansion process to a point where pressure in the system is 500 kPa. At that point, the system is subjected to an isothermal expansion process until system reaches the initial state completing a cycle.

The maximum pressure in the cycle (in kPa) is:

- A. 1200
- B. 1300
- C. 1400
- D. 1500

1. Solution

$$P_1 = 100 \text{ kPa}, T_1 = 25 ^{\circ}\text{C},$$

$$V_1 = 0.01 \text{ m}^3$$
,

The process $1\rightarrow 2$ is an isothermal process.

$$T_1 = T_2 = 25$$
 °C

$$V_1 = 0.002 \text{ m}^3$$

$$\frac{P_2V_2}{T_2} = \frac{P_1V_1}{T_1}$$

$$P_2 = \frac{P_1 V_1}{V_2} = \frac{100 \times 0.01}{0.002}$$

$$= 500 kPa$$

 $Pv^{k} = constant$ $T_{2} = T_{1} (Isotherm)$ $T_{2} = T_{1} (Isotherm)$

The process $2\rightarrow 3$ is a polytropic process.

$$V_1 = 0.001 \text{ m}^3$$

$$P_3V_3^n = P_2V_2^n (n = k)$$

$$P_3 = P_2 \left(\frac{V_2}{V_3}\right)^k = 500 * \left(\frac{0.002}{0.001}\right)^{1.4} = 1319 \, kPa$$

Answer: B

2. A carnot cycle is conducted using air contained in a cylinder-piston configuration as shown in the figure below. Initially, the system contains air at 25 deg C, 100 kPa and $0.01~\text{m}^3$. You may designate this as state 1. The system is first compressed isothermally until the volume is $0.002~\text{m}^3$. From that point, the system undergoes a polytropic compression process with exponent n=1.4 until the volume further reduces to $0.001~\text{m}^3$. After that the system undergoes an isothermal expansion process to a point where pressure in the system is 500 kPa. At that point, the system is subjected to an isothermal expansion process until system reaches the initial state completing a cycle.

The maximum temperature in the cycle (in K) is:

- A. 390
- B. 490
- C. 590
- D. 690

2. Solution

$$\frac{P_2V_2}{T_2} = \frac{P_3V_3}{T_3}$$

$$T_3 = \left(\frac{P_3}{P_2}\right) \left(\frac{V_3}{V_2}\right) T_2 = \frac{298.15 \times 1319 \times 0.001}{500 \times 0.002}$$

$$T_3 = 393.25 K$$

The volume after completion of the isothermal expansion process (in m³) is:

- A. 0.002
- B. 0.003
- C. 0.004
- D. 0.005

3. Solution

During the isothermal expansion process,

$$\frac{P_3V_3}{T_3} = \frac{P_4V_4}{T_4} \; ; \; P_4 = 263.8 \; kPa$$

$$V_4 = \frac{P_3 V_3}{P_4} = \frac{1319 \times 0.001}{263.8} = 0.005 \text{ m}^3$$

Answer: D

The magnitude of work done during the isothermal compression (in kJ) is:

- A. 1.6
- B. 2.6
- C. 3.6
- D. 4.6
- 4. Solution

$$_{1}W_{2}=\int\limits_{V_{1}}^{V_{2}}PdV$$

During the process $1\rightarrow 2$,

$$PV = P_1V_1 = 100 \times 0.01$$
m³ = 1

$$_{1}W_{2} = \int_{V_{1}}^{V_{2}} \frac{dV}{V} = ln \frac{V_{2}}{V_{1}}$$

$$_{1}W_{2} = ln \frac{0.002}{0.01} = -1.609 \, kJ$$

Magnitude of work = $| _1W_2 | = 1.609 kJ$

The magnitude of work of compression in the polytropic process (in KJ) is:

- A. 0.6
- B. 0.7
- C. 0.8
- D. 0.9

5. Solution

For the polytropic compression process ($PV^k = constant$),

$$_{2}W_{3} = \int\limits_{V_{2}}^{V_{3}} PdV = \frac{P_{3}V_{3} - P_{2}V_{2}}{1 - k}$$

$$_{2}W_{3} = \frac{1319 \times 0.001 - 500 \times 0.002}{1 - 1.4}$$

$$= -0.797 \, kJ$$

Magnitude of work = $|_2W_3|$ = 0.797 kJ

Answer: C

The work during the isothermal expansion process (in kJ) is:

- A. 1.1
- B. 2.1
- C. 3.1
- D. 4.1

6. Solution

$$_{3}W_{4}=\int\limits_{V_{3}}^{V_{4}}PdV$$

During the isothermal process $3\rightarrow 4$,

$$PV = C = P_3V_3 = 1319 \times 0.001 = 1.319$$

$$_{3}W_{4} = \int\limits_{V_{3}}^{V_{4}} \frac{1.319}{V} dV = 1.319 \ ln \frac{V_{4}}{V_{3}}$$

$$_{3}W_{4} = 1.319 \, ln \frac{0.005}{0.001} = 2.12 \, kJ$$

Answer: B

The work done during the polytropic expansion process (in kJ) is:

- A. 0.5
- B. 0.6
- C. 0.7
- D. 0.8
- 7. Solution

$$_{4}W_{1}=\int\limits_{V_{4}}^{V_{1}}PdV$$

For the polytropic process $PV^k = C$,

$$_{4}W_{1}=\frac{P_{1}V_{1}-P_{4}V_{4}}{1-k}$$

$$P_4 = 263.8 \, kPa$$

$$V_4 = 0.005 \text{m}^3$$

$$_4W_1 = \frac{100 \times 0.01 - 0.005 \times 263.8}{1 - 1.4}$$

$$= 0.797 kJ$$

Answer: D

The net work of the cycle (in kJ) is:

- A. 0.4
- B. 0.5
- C. 0.6
- D. 0.7

8. Solution

$$W_{net} = {}_{3}W_{4} + {}_{4}W_{1} - |{}_{1}W_{2}| - |{}_{2}W_{3}|$$

$$W_{net} = 2.12 + 0.797 - 1.609 - 0.797$$

$$W_{net} = 0.511 \, kJ$$

Answer: B

The heat input during the isothermal expansion process (in kJ) is:

- A. 2.1
- B. 3.1
- C. 4.1
- D. 5.1

9. Solution

Heat input (Process 3→4)

First law: System

$$_{3}Q_{4}=U_{4}-U_{3}+_{3}W_{4}$$

$$= mC_{v0}(T_4 - T_3) + {}_3W_4$$

Since $T_4 = T_3$,

$$_{3}Q_{4} = _{3}W_{4} = 2.12 \, kJ$$

The heat input during the polytropic expansion process (in kJ) is:

- A. 0
- B. 1
- C. 2
- D. 3

10. Solution

Polytropic expansion process 4→1,

$${}_{4}Q_{1} = U_{4} - U_{1} + {}_{4}W_{1}$$

$$= mC_{v0}(T_{1} - T_{4}) + {}_{4}W_{1}$$

$$T_{1} = 298.15 K; T_{4} = T_{3} = 393.15 K$$

$$m = \frac{P_{1}V_{1}}{RT_{1}} = \frac{100 \times 0.01}{0.287 \times 298.15} = 0.011686 kg$$

$${}_{4}W_{1} = 0.797 kJ$$

$${}_{4}Q_{1} = 0.011686 \times 0.717(298.15 - 393.15) + 0.797$$

$${}_{4}Q_{1} = -0.796 + 0.797 = 0.001 kJ$$

The heat rejected during the polytropic compression process (in kJ) is:

- A. 3
- B. 2
- C. 1
- D. 0

11. Solution

Process 3→4 (Polytropic Compression)

$$_{2}Q_{3} = U_{3} - U_{2} + _{2}W_{3}$$
 $_{2}Q_{3} = mC_{v0}(T_{3} - T_{2}) + _{2}W_{3}$
 $_{2}W_{3} = -0.797 \ kJ$
 $_{2}Q_{3} = 0.01168 \times 0.717(393.25 - 298.15) - 0.797$
 $_{2}Q_{3} = 0.796 - 0.797 = -0.001 \ kJ$

Answer: D

The cycle efficiency (in %) is:

- A. 14
- B. 24
- C. 34
- D. 44

12. Solution

$$n_{th} = \frac{W_{net}}{Q_H} = \frac{0.511}{2.12} = 0.24 (24\%)$$

Also try

$$n_{th} = 1 - \frac{T_L}{T_H} (for Carnot Cycle)$$

$$n_{th} = 1 - \frac{298.15}{393.15} = 1 - 0.758$$

$$= 0.241 (24\%)$$

Answer: B

The mean effective pressure (in kPa) is:

- A. 57
- B. 67
- C. 77
- D. 87

13. Solution

$$mep = \frac{W_{net}}{(V_1 - V_3)} = \frac{0.511}{(0.01 - 0.001)}$$

= 56.77 kPa