University Of Dundee MATHEMATICS

An Introduction to Matlab
Version 2.1

David F. Griffiths

Department of Mathematics
The University
Dundee DD1 4HN

Contents

1 MATLAB
2 Starting Up
3 Matlab as a Calculator
4 Numbers \& Formats
5 Variables
5.1 Variable Names
6 Suppressing output
7 Built-In Functions
7.1 Trigonometric Functions
7.2 Other Elementary Functions 3
8 Vectors 4
8.1 The Colon Notation4
8.2 Extracting Bits of a Vector 4
8.3 Column Vectors 5
8.4 Transposing 5
9 Keeping a record 5
10 Plotting Elementary Functions 6
10.1 Plotting-Titles \& Labels 6
10.2 Grids 6
10.3 Line Styles \& Colours 6
10.4 Multi-plots 7
10.5 Hold 7
10.6 Hard Copy 7
10.7 Subplot 7
10.8 Zooming 7
10.9 Controlling Axes 8
11 Keyboard Accelerators 8
12 Copying to and from Emacs 8
13 Script Files 9
14 Products, Division \& Powers of Vec- tors 9
14.1 Scalar Product (*) 9
14.2 Dot Product (.*) 10
14.3 Dot Division of Arrays (./) 11
14.4 Dot Power of Arrays (.^) 11
15 Examples in Plotting 11
16 Matrices-Two-Dimensional Arrays 12
16.1 Size of a matrix 13
16.2 Transpose of a matrix 13
16.3 Special Matrices 13
16.4 The Identity Matrix 13
16.5 Diagonal Matrices 14
16.6 Building Matrices 14
16.7 Tabulating Functions 14
16.8 Extracting Bits of Matrices 15
16.9 Dot product of matrices (.*) 15
16.10Matrix-vector products 15
16.11Matrix-Matrix Products 16
17 Fireworks 16
18 Loops 17
19 Logicals 18
19.1 While Loops 19
19.2 if...then...else...end 19
20 Function m-files 20
20.1 Examples of functions 21
21 Further Built-in Functions 22
21.1 Rounding Numbers 22
21.2 The sum Function 22
21.3 max \& min 23
21.4 Random Numbers 23
21.5 find for vectors 23
21.6 find for matrices 24
22 Plotting Surfaces 24
23 Timing 25
24 On-line Documentation 26
25 Demos 26
26 Command Summary 26

1 MATLAB

- Matlab is an interactive system for doing numerical computations.
- A numerical analyst called Cleve Moler wrote the first version of Matlab in the 1970s. It has since evolved into a successful commercial software package.
- Matlab relieves you of a lot of the mundane tasks associated with solving problems numerically. This allows you to spend more time thinking, and encourages you to experiment.
- Matlab makes use of highly respected algorithms and hence you can be confident about your results.
- Powerful operations can be performed using just one or two commands.
- You can build up your own set of functions for a particular application.
- Excellent graphics facilities are available, and the pictures can be inserted into $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ documents.

2 Starting Up

- You should have a directory reserved for saving files associated with Matlab. Create such a directory (mkdir) if you do not have one. Change into this directory (cd).
- Start up a new xterm window (do xterm \& in the existing xterm window).
- Launch Matlab in one of the xterm windows with the command

matlab

After a short pause, the logo will be shown followed by
where >> is the Matlab prompt.
Type help help for "help" and quit to exit from Matlab.

3 Matlab as a Calculator

The basic arithmetic operators are $+-* /$ - and these are used in conjunction with brackets: (). The symbol - is used to get exponents (powers): $2 \wedge 4=16$.
You should type in commands shown following the prompt: >>.
>> $2+3 / 4 * 5$
ans $=$
5.7500
>>
Is this calculation $2+3 /(4 * 5)$ or $2+(3 / 4) * 5$? Matlab works according to the priorities:

1. quantities in brackets,
2. powers $2+3^{\wedge} 2 \Rightarrow 2+9=11$,
3. $* /$, working left to right $(3 * 4 / 5=12 / 5)$,
4. +- , working left to right $(3+4-5=7-5)$,

Thus, the earlier calculation was for $2+(3 / 4) * 5$ by priority 3 .

4 Numbers \& Formats

Matlab recognizes several different kinds of numbers

Type	Examples
Integer	$1362,-217897$
Real	$1.234,-10.76 \quad(i=\sqrt{-1})$
Complex	$3.21-4.3 i \quad$ Infinity (result of dividing by 0)
Inf	Not a Number, $0 / 0$
NaN	N

The "e" notation is used for very large or very small numbers:
$-1.3412 \mathrm{e}+03=-1.3412 \times 10^{3}=-1341.2$
$-1.3412 \mathrm{e}-01=-1.3412 \times 10^{-1}=-0.13412$
All computations in MATLAB are done in double precision, which means about 15 significant figures. The format-how Matlab prints numbers-is controlled by the "format" command. Type help format for full list.

Command	Example of Output
>>format short	$31.4162(4$-decimal places)
>>format short e	$3.1416 e+01$
>>format long e	$3.141592653589793 e+01$
>>format short	$31.4162(4$-decimal places)
>>format bank	$31.42(2$-decimal places)

Should you wish to switch back to the default format then format will suffice.
The command

format compact

is also useful in that it supresses blank lines in the output thus allowing more information to be displayed.

```
5 Variables
>> \(3-2 \wedge 4\)
ans =
    \(-13\)
>> ans*5
ans =
    -65
```

The result of the first calculation is labelled "ans" by Matlab and is used in the second calculation where its value is changed.
We can use our own names to store numbers:

```
>> x = 3-2^4
x =
    -13
>> y = x*5
y =
    -65
```

so that x has the value -13 and $y=-65$. These can be used in subsequent calculations. These are examples of assignment statements: values are assigned to variables. Each variable must be assigned a value before it may be used on the right of an assignment statement.

5.1 Variable Names

Legal names consist of any combination of letters and digits, starting with a letter. These are allowable:

```
NetCost, Left2Pay, x3, X3, z25c5
```

These are not allowable:
Net-Cost, 2pay, \%x, @sign

Use names that reflect the values they represent.
Special names: you should avoid using eps $=2.2204 \mathrm{e}-16=2^{-54}$ (The largest number such that $1+$ eps is indistinguishable from 1) and pi $=3.14159 \ldots=\pi$.
If you wish to do arithmetic with complex numbers, both i and j have the value $\sqrt{-1}$ unless you change them

```
>> i,j, i=3
ans = 0 + 1.0000i
ans = 0 + 1.0000i
i = 3
```


6 Suppressing output

One often does not want to see the result of intermediate calculations - terminate the assignment statement or expression with semi-colon

```
>> x=-13; y = 5*x, z = x^2+y
y =
    -65
z =
    104
>>
```

the value of x is hidden. Note also we can place several statements on one line, separated by commas or semi-colons.

Exercise 6.1 In each case find the value of the expression in Matlab and explain precisely the order in which the calculation was performed.
i) $\quad-2 \wedge 3+9$
ii) $2 / 3 * 3$
iii) $3 * 2 / 3$
iv) $3 * 4-5^{\wedge} 2 * 2-3$
v) $\left(2 / 3^{\wedge} 2 * 5\right) *(3-4 \wedge 3) \wedge 2$
vi) $3 *\left(3 * 4-2 * 5^{\wedge} 2-3\right)$

7 Built-In Functions

7.1 Trigonometric Functions

Those known to Matlab are
sin, cos, tan
and their arguments should be in radians.
e.g. to work out the coordinates of a point on a circle of radius 5 centred at the origin and having an elevation $30^{\circ}=\pi / 6$ radians:

```
>> x = 5*cos(pi/6), y = 5*sin(pi/6)
x =
    4.3301
y =
    2.5000
```

The inverse trig functions are called asin, acos, atan (as opposed to the usual arcsin or $\sin ^{-1}$ etc.). The result is in radians.
>> $\operatorname{acos}(x / 5), \operatorname{asin}(y / 5)$
ans $=0.5236$
ans $=0.5236$
>> pi/6
ans $=0.5236$

7.2 Other Elementary Functions

These include sqrt, exp, $\log , \log 10$

```
>> x = 9;
>> sqrt(x), exp(x),log(sqrt(x)),log10(x^2+6)
ans =
    3
ans =
    8.1031e+03
ans =
            1.0986
ans =
    1.9395
```

$\exp (\mathrm{x})$ denotes the exponential function $\exp (x)=$ e^{x} and the inverse function is log:

```
>> format long e, exp(log(9)), log(exp(9))
ans = 9.000000000000002e+00
ans = 9
>> format short
```

and we see a tiny rounding error in the first calculation. $\log 10$ gives logs to the base 10. A more complete list of elementary functions is given in Table 1 on page 26 .

8 Vectors

These come in two flavours and we shall first describe row vectors: they are lists of numbers separated by either commas or spaces. The number of entries is known as the "length" of the vector and the entries are often referred to as "elements" or "components" of the vector. The entries must be enclosed in square brackets.

```
>> v = [ 1 3, sqrt(5)]
v =
    1.0000 3.0000
    2.2361
>> length(v)
ans =
    3
```

Spaces can be vitally important:

```
>> v2 = [3+ 4 5]
v2 =
    7 5
>> v3 = [l3 +4 5}
v3 =
    3 4 5
```

We can do certain arithmetic operations with vectors of the same length, such as v and v3 in the previous section.

```
>> v + v3
ans =
    4.0000 7.0000 7.2361
>> v4 = 3*v
v4 =
    3.0000 9.0000 6.7082
>> v5 = 2*v -3*v3
v5 =
    -7.0000 -6.0000 -10.5279
>> v + v2
??? Error using ==> +
Matrix dimensions must agree.
```

i.e. the error is due to v and v 2 having different lengths.

A vector may be multiplied by a scalar (a numbersee v4 above), or added/subtracted to another vector of the same length. The operations are carried out elementwise.
We can build row vectors from existing ones:

```
>> w = [llll}12\mp@code{3}],\quadz=[[8 9]
>> cd = [2*z,-w], sort(cd)
w =
    1 2
z =
    8 9
cd =
    16
ans =
    -3
```

Notice the last command sort'ed the elements of cd into ascending order.
We can also change or look at the value of particular entries

```
>> w(2) = -2, w(3)
w =
    1 -2 3
ans =
    3
```


8.1 The Colon Notation

This is a shortcut for producing row vectors:

```
>> 1:4
ans =
1 2 3 4
>> 3:7
ans =
    3
>> 1:-1
ans =
```

More generally $a: b: c$ produces a vector of entries starting with the value a, incrementing by the value b until it gets to c (it will not produce a value beyond c). This is why 1:-1 produced the empty vector [].

```
>> 0.32:0.1:0.6
ans =
    0.3200 0.4200 0.5200
>> -1.4:-0.3:-2
ans =
    -1.4000 -1.7000 -2.0000
```


8.2 Extracting Bits of a Vector

```
>> r5 = [1:2:6, -1:-2:-7]
r5 =
    1
```

To get the 3 rd to 6 th entries:

```
>> r5(3:6)
ans =
    \(\begin{array}{llll}5 & -1 & -3 & -5\end{array}\)
```

To get alternate entries:

```
>> r5(1:2:7)
ans =
    5 -1 
```

What does r5 (6:-2:1) give?
See help colon for a fuller description.

8.3 Column Vectors

These have similar constructs to row vectors. When defining them, entries are separated by ; or "newlines"

```
>> c = [ 1; 3; sqrt(5)]
c =
    1.0000
    3.0000
    2.2361
>> c2 = [3
4
5]
c2 =
            3
            4
            5
>> c3 = 2*c - 3*c2
c3 =
    -7.0000
    -6.0000
    -10.5279
```

so column vectors may be added or subtracted provided that they have the same length.

8.4 Transposing

We can convert a row vector into a column vector (and vice versa) by a process called transposingdenoted by '.

```
>> w, w', c, c'
w =
    1 -2 3
ans =
            1
    -2
    3
c =
    1.0000
    3.0000
    2.2361
ans =
```

```
        1.0000 3.0000
        2.2361
>> t = w + 2*C,
t =
    3.0000 4.0000 7.4721
>> T = 5*W'-2*C
T =
    3.0000
    -16.0000
    10.5279
```

If x is a complex vector, then x ' gives the complex conjugate transpose of x :

```
>> x = [1+3i, 2-2i]
ans =
    1.0000 + 3.0000i 2.0000-2.0000i
>> x'
ans =
    1.0000 - 3.0000i
    2.0000 + 2.0000i
```

Note that the components of x were defined without a $*$ operator; this means of defining complex numbers works even when the variable i already has a numeric value. To obtain the plain transpose of a complex number use .' as in
>> x.'
ans =
$1.0000+3.0000 i$
$2.0000-2.0000 i$

9 Keeping a record

Issuing the command
>> diary mysession
will cause all subsequent text that appears on the screen to be saved to the file mysession located in the directory in which Matlab was invoked. You may use any legal filename except the names on and off. The record may be terminated by
>> diary off
The file mysession may be edited with emacs to remove any mistakes.
If you wish to quit Matlab midway through a calculation so as to continue at a later stage:

```
>> save thissession
```

will save the current values of all variables to a file called thissession.mat. This file cannot be edited. When you next startup Matlab, type

```
>> load thissession
```

and the computation can be resumed where you left off.
A list of variables used in the current session may be seen with
>> whos
See help whos and help save.

Name	Size	Elements	Bytes	Density	Complex
ans	1 by 1	11	8	Full	No
v	1 by 3	3	24	Full	No
v1	1 by 2	2	16	Full	No
v2	1 by 2	2	16	Full	No
v3	1 by 3	3	24	Full	No
v4	1 by 3	3	24	Full	No
X	1 by 1	11	8	Full	No
y	1 by 1	11	8	Full	No

Grand total is 16 elements using 128 bytes

10 Plotting Elementary Functions

Suppose we wish to plot a graph of $y=\sin 3 \pi x$ for $0 \leq x \leq 1$. We do this by sampling the function at a sufficiently large number of points and then joining up the points (x, y) by straight lines. Suppose we take $N+1$ points equally spaced a distance h apart:
>> $N=10 ; h=1 / N ; x=0: h: 1 ;$
defines the set of points $x=0, h, 2 h, \ldots, 1-h, 1$. The corresponding y values are computed by
>> y $=\sin (3 * \mathrm{pi} * \mathrm{x})$;
and finally, we can plot the points with
>> plot (x, y)
The result is shown in Figure 1, where it is clear that the value of N is too small.

Figure 1: Graph of $y=\sin 3 \pi x$ for $0 \leq x \leq 1$ using $h=0.1$.

On changing the value of N to 100:

```
>> N = 100; h = 1/N; x = 0:h:1;
>> y = sin(3*pi*x); plot(x,y)
```

we get the picture shown in Figure 2.

Figure 2: Graph of $y=\sin 3 \pi x$ for $0 \leq x \leq 1$ using $h=0.01$.

10.1 Plotting-Titles \& Labels

To put a title and label the axes, we use

```
>> title('Graph of y = sin(3pi x)')
>> xlabel('x axis')
>> ylabel('y-axis')
```

The strings enclosed in single quotes, can be anything of our choosing (it is not straightforward to get formatted mathematical expressions as in $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$).

10.2 Grids

A dotted grid may be added by
>> grid
This can be removed using either grid again, or grid off.

10.3 Line Styles \& Colours

The default is to plot solid lines. A solid white line is produced by
>> plot($\mathrm{x}, \mathrm{y},{ }^{\prime} \mathrm{w}^{-}$')
The third argument is a string whose first character specifies the colour(optional) and the second the line style. The options for colours and styles are:

Colours		Line Styles	
y	yellow	-	point
m	magenta	o	circle
c	cyan	x	x-mark
r	red	+	plus
g	green	-	solid
b	blue	$*$	star
w	white	:	dotted
k	black	.-	dashdot
		--	dashed

10.4 Multi-plots

Several graphs may be drawn on the same figure as in

A descriptive legend may be included with
>> legend('Sin curve',' Cos curve')
which will give a list of line-styles, as they appeared in the plot command, followed by a brief description. Matlab fits the legend in a suitable position, so as not to conceal the graphs whenever possible. For further information do help plot etc. The result of the commands

```
>> plot(x,y,'w-',x,cos(2*pi*x),'g--')
>> legend('Sin curve','Cos curve')
>> title('Multi-plot ')
>> xlabel('x axis'), ylabel('y axis')
>> grid
```

is shown in Figure 3. The legend may be moved manually by dragging it with the mouse.

Figure 3: Graph of $y=\sin 3 \pi x$ and $y=\cos 3 \pi x$ for $0 \leq x \leq 1$ using $h=0.01$.

10.5 Hold

A call to plot clears the graphics window before plotting the current graph. This is not convenient if we wish to add further graphics to the figure at some later stage. To stop the window being cleared:
>> plot($x, y,{ }^{\prime}{ }^{-}$'), hold
>> plot(x,y,'gx'), hold off
"hold on" holds the current picture; "hold off" releases it (but does not clear the window, which can be done with clg). "hold" on its own toggles the hold state.

10.6 Hard Copy

To obtain a printed copy on the bubblejet printer:

1. Issue the Matlab command
print -deps fig1
which will save a copy of the image in a file called fig1.eps (Encapsulated PostScript).
2. Move the mouse pointer into another xterm window, check that it is looking at the same directory (pwd) and issue the Unix command
lpr -Pbj fig1.eps

10.7 Subplot

The graphics window may be split into an $m \times n$ array of smaller windows into which we may plot one or more graphs. The windows are counted 1 to $m n$ row-wise, starting from the top left. Both hold and grid work on the current subplot.

```
>> subplot(221), plot(x,y)
>> xlabel('x'),ylabel('sin 3 pi x')
>> subplot(222), plot(x,cos(3*pi*x))
>> xlabel('x'),ylabel('cos 3 pi x')
>> subplot(223), plot(x,sin(6*pi*x))
>> xlabel('x'),ylabel('sin 6 pi x')
>> subplot(224), plot(x,\operatorname{cos}(6*pi*x))
>> xlabel('x'),ylabel('cos 6 pi x')
subplot (221) (or subplot \((2,2,1)\) ) specifies that the window should be split into a \(2 \times 2\) array and we select the first subwindow.
```


10.8 Zooming

We often need to "zoom in" on some portion of a plot in order to see more detail. This is easily achieved using the command
>> zoom

Pointing the mouse to the relevant position on the plot and clicking the left mouse button will zoom in by a factor of two. This may be repeated to any desired level.
Clicking the right mouse button will zoom out by a factor of two.
Holding down the left mouse button and dragging the mouse will cause a rectangle to be outlined. Releasing the button causes the contents of the rectangle to fill the window.
zoom off turns off the zoom capability.
Exercise 10.1 Draw graphs of the functions

$$
\begin{aligned}
& y=\cos x \\
& y=x
\end{aligned}
$$

for $0 \leq x \leq 2$ on the same window. Use the zoom facility to determine the point of intersection of the two curves (and, hence, the root of $x=\cos x$) to two significant figures.

10.9 Controlling Axes

Once a plot has been created in the graphics window you may wish to change the range of x and y values shown on the picture.

```
>> clg, N = 100; h = 1/N; x = 0:h:1;
>> y = sin(3*pi*x); plot(x,y)
>> axis([-0.5 1.5 -1.2 1.2]), grid
```

The axis command has four parameters, the first two are the minimum and maximum values of x to use on the axis and the last two are the minimum and maximum values of y. Note the square brackets. The result of these commands is shown in Figure 4. Look at help axis and experiment with the commands axis('equal'), axis('auto'), axis('square'), axis('normal'), in any order.

Figure 4: The effect of changing the axes of a plot.

11 Keyboard Accelerators

One can recall previous Matlab commands by using the \uparrow and \downarrow cursor keys. Repeatedly pressing \uparrow will review the previous commands (most recent first) and, if you want to re-execute the command, simply press the return key.
To recall the most recent command starting with p , say, type p at the prompt followed by \uparrow. Similarly, typing pr followed by \uparrow will recall the most recent command starting with pr.
Once a command has been recalled, it may be edited (changed). You can use \leftarrow and \rightarrow to move backwards and forwards through the line, characters may be inserted by typing at the current cursor position or deleted using the Del key. This is most commonly used when long command lines have been mistyped or when you want to re-execute a command that is very similar to one used previously.
The following emacs commands may also be used:

```
cntrl a move to start of line
cntrl e move to end of line
cntrl f move forwards one character
cntrl b move backwards one character
cntrl d delete character under the cursor
```

Once you have the command in the required form, press return.

Exercise 11.1 Type in the commands

```
>> x = -1:0.1:1;
>> plot(x,sin(pi*x),'w-')
>> hold on
>> plot(x,cos(pi*x),'r-')
```

Now use the cursor keys with suitable editing to execute:

```
>> x = -1:0.05:1;
>> plot(x,sin(2*pi*x),'w-')
>> plot(x,cos(2*pi*x),'r-.'), hold off
```


12 Copying to and from Emacs

There are many situations where one wants to copy the output resulting from a Matlab command (or commands) into a file being edited in Emacs. The rules are the same as for copying text in an Emacs window.
In order to carry out the following exercise, you should have Matlab running in one window and Emacs running in another.
To copy material from Matlab into Emacs: (L means click Left Mouse Button, etc)

Select the material to copy: L on the start of the material you want in the Matlab window, R at the end then move the mouse into the Emacs window and L at the location you want the text to appear. Finally, click the M.
The process for copying commands from an emacs file into Matlab is entirely similar, except that you can only copy material to the prompt line. You may copy as many lines as you want.

Exercise 12.1 1. Copy the file

~dfg/NAP/Matlab/CopyExercise.m
into your own area:
~dfg/NAP/Matlab/CopyExercise.m.
Load the file into emacs. You should also have Matlab running in another xterm window.
2. Copy the commands one at a time from the file into Matlab.
3. Type CopyExercise at the Matlab promptyou should see the results of the commands being executed.
4. Type echo on at the Matlab prompt and then CopyExercise-you should see the commands as well as the results. echo off will switch off echoing.

13 Script Files

The last part of Exercise 12.1 introduced the idea of a script file. This is a normal ASCII (text) file that contains Matlab commands. It is essential that the file name should have an extension .m (e.g. Exercise4.m) and, for this reason, they are commonly known as m-files. The commands in this file may then be executed using

>> Exercise4

Note: this command does not include the file name extension .m.
It is only the output from the commands (and not the commands themselves) that are displayed on the screen. To see the commands:
>> echo on
and echo off will turn echoing off.
Any text that follows \% on a line is ignored. The main purpose of this facility is to enable comments to be included in the file to describe its purpose. To see what m-files you have in your current directory, use
>> what
Exercise 13.1 1. Type in the commands from §10.7 into a file called exsub.m.
2. Use what to check that the file is in the correct area.
3. Use the command type exsub to see the contents of the file.
4. Execute these commands.

See $\S 20$ for the related topic of function files.

14 Products, Division \& Powers of Vectors

14.1 Scalar Product (*)

We shall describe two ways in which a meaning may be attributed to the product of two vectors. In both cases the vectors concerned must have the same length.
The first product is the standard scalar product.
Suppose that \underline{u} and \underline{v} are two vectors of length n, \underline{u} being a row vector and \underline{v} a column vector:

$$
\underline{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right], \quad \underline{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

The scalar product is defined by multiplying the corresponding elements together and adding the results to give a single number (scalar).

$$
\underline{u} \underline{v}=\sum_{i=1}^{n} u_{i} v_{i}
$$

For example, if $\underline{u}=[10,-11,12]$, and $\underline{v}=\left[\begin{array}{r}20 \\ -21 \\ -22\end{array}\right]$
then $n=3$ and
$\underline{u} \underline{v}=10 \times 20+(-11) \times(-21)+12 \times(-22)=167$.
We can perform this product in Matlab by

```
>> u = [ 10, -11, 12], v = [20; -21; -22]
>> prod = u*v % row times column vector
```

Suppose we also define a row vector w and a column vector z by

and we wish to form the scalar products of u with w and v with z .
>> $u *$ w
??? Error using ==> *
Inner matrix dimensions must agree.
an error results because w is not a column vector. Recall from page 5 that transposing (with ') turns column vectors into row vectors and vice versa.

So, to form the scalar product of two row vectors or two column vectors,

```
>> u*w' % u & w are row vectors
ans =
    4 5
>> u*u' % u is a row vector
ans =
    365
>> v'*z % v & z are column vectors
ans =
    -96
```

We shall refer to the Euclidean length of a vector as the norm of a vector; it is denoted by the symbol $\|\underline{u}\|$ and defined by

$$
\|\underline{u}\|=\sqrt{\sum_{i=1}^{n}\left|u_{i}\right|^{2}}
$$

where n is its dimension. This can be computed in Matlab in one of two ways:

```
>> [ sqrt(u*u'), norm(u)]
ans =
    19.1050 19.1050
```

where norm is a built-in Matlab function that accepts a vector as input and delivers a scalar as output. It can also be used to compute other norms: help norm.

Exercise 14.1 The angle, θ, between two column vectors \underline{x} and \underline{y} is defined by

$$
\cos \theta=\frac{\underline{x}^{\prime} \underline{y}}{\|\underline{x}\|\|\underline{y}\|}
$$

Use this formula to determine the cosine of the angle between

$$
\underline{x}=[1,2,3]^{\prime} \quad \text { and } \quad \underline{y}=[3,2,1]^{\prime} .
$$

Hence find the angle in degrees.

14.2 Dot Product (.*)

The second way of forming the product of two vectors of the same length is known as the Hadamard product. It is not often used in Mathematics but is an invaluable Matlab feature. It involves vectors of the same type. If \underline{u} and \underline{v} are two vectors of the
same type (both row vectors or both column vectors), the mathematical definition of this product, which we shall call the dot product, is the vector having the components

$$
\underline{u} \cdot \underline{v}=\left[u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{n} v_{n}\right] .
$$

The result is a vector of the same length and type as \underline{u} and \underline{v}. Thus, we simply multiply the corresponding elements of two vectors.
In Matlab, the product is computed with the operator .* and, using the vectors u, v, w, z defined on page 9 ,

```
>> u.*W
ans =
    20-11 36
>> u.*v'
ans =
    200 231-264
>> v.*z, u'.*v
ans =
    140-126 -110
ans =
    200 231-264
```

Example 14.1 Tabulate the function $y=x \sin \pi x$ for $x=0,0.25, \ldots, 1$.

It is easier to deal with column vectors so we first define a vector of x-values: (see Transposing: $\S 8.4$) >> $\mathrm{x}=(0: 0.25: 1)^{\prime}$;
To evaluate y we have to multiply each element of the vector x by the corresponding element of the vector $\sin \pi x$:

$x \times \sin \pi x$	$=x \sin \pi x$
0×0	$=$
0.2500×0.7071	$=$
0.1768	
$0.5000 \times 1.0000=$	0.5000
$0.7500 \times 0.7071=$	0.5303
$1.0000 \times 0.0000=$	0.0000

To carry this out in Matlab:

$$
\begin{aligned}
& \text { >> } y=x \cdot * \sin (p i * x) \\
& \mathrm{y}=
\end{aligned}
$$

Note: a) the use of pi, b) x and $\sin (p i * x)$ are both column vectors (the sin function is applied to each element of the vector). Thus, the dot product of these is also a column vector.

14.3 Dot Division of Arrays (./)

There is no mathematical definition for the division of one vector by another. However, in Matlab, the operator ./ is defined to give element by element division-it is therefore only defined for vectors of the same size and type.

```
>> a = 1:5, b = 6:10, a./b
a =
    1 2 % 3 4 4
b =
    6
ans =
    0.1667
>> a./a
ans =
            1 1
>> c = -2:2, a./c
c =
    -2 
Warning: Divide by zero
ans =
    -0.5000 -2.0000 Inf 4.0000 2.5000
```

The previous calculation required division by 0 notice the Inf, denoting infinity, in the answer.

```
>> a.*b -24, ans./c
ans =
    -18
Warning: Divide by zero
ans =
    9 10 NaN 12 12
```

Here we are warned about 0/0-giving a NaN (Not a Number).

Example 14.2 Estimate the limit

$$
\lim _{x \rightarrow 0} \frac{\sin \pi x}{x}
$$

The idea is to observe the behaviour of the ratio $\frac{\sin \pi x}{x}$ for a sequence of values of x that approach zero. Suppose that we choose the sequence defined by the column vector
>> $\mathrm{x}=[0.1 ; 0.01 ; 0.001 ; 0.0001]$
then

```
>> sin(pi*x)./x
```

ans =
3.0902
3.1411
3.1416
3.1416
which suggests that the values approach π. To get a better impression, we subtract the value of π from each entry in the output and, to display more decimal places, we change the format
>> format long
>> ans -pi
ans =
-0.05142270984032
-0.00051674577696
-0.00000516771023
-0.00000005167713
Can you explain the pattern revealed in these numbers?
We also need to use . / to compute a scalar divided by a vector:

```
>> 1/x
??? Error using ==> /
Matrix dimensions must agree.
>> 1./x
ans =
    10}10010001000
so \(1 . / \mathrm{x}\) works, but \(1 / \mathrm{x}\) does not.
```


14.4 Dot Power of Arrays (. ${ }^{\wedge}$)

To square each of the elements of a vector we could, for example, do u.*u. However, a neater way is to use the . ^ operator:

```
>>u.^2
ans =
    100 121 144
>> u.*u
ans =
    100}121\quad14
>> u.^4
ans =
            10000 14641 20736
>> v.^2
ans =
    4 0 0
    4 4 1
    4 8 4
>> u.*W.^(-2)
ans =
    2.5000 -11.0000 1.3333
```

Recall that powers (. ${ }^{\wedge}$ in this case) are done first, before any other arithmetic operation.

15 Examples in Plotting

Example 15.1 Draw graphs of the functions

$$
\begin{array}{llll}
\text { i) } & y=\frac{\sin x}{x} & \text { ii) } & u=\frac{1}{(x-1)^{2}}+x \\
\text { iii) } & v=\frac{x^{2}+1}{x^{2}-4} & \text { iv) } & w=\frac{(10-x)^{1 / 3}-2}{\left(4-x^{2}\right)^{1 / 2}}
\end{array}
$$

for $0 \leq x \leq 10$.
> $\mathrm{x}=0: 0.1: 10$;
$\gg y=\sin (x) . / x ;$
>> subplot(221), plot(x,y), title('(i)')
Warning: Divide by zero
>> $u=1 . /(x-1) . \wedge 2+x$;
>> subplot(222), plot(x,u), title('(ii)')
Warning: Divide by zero
>> v = (x. $\left.{ }^{\wedge} 2+1\right) . /\left(x .{ }^{\wedge} 2-4\right)$;
>> subplot(223), plot(x,v),title('(iii)')
Warning: Divide by zero
>> w = (($\left.10-\mathrm{x}) .^{\wedge}(1 / 3)-1\right) . / \operatorname{sqrt}\left(4-\mathrm{x} .^{\wedge} 2\right)$;
Warning: Divide by zero
>> \quad subplot(224), plot(x,w),title('(iv)')

(iii)

and

$$
z=\sin ^{2} \pi x /\left(x^{-2}+3\right)
$$

for $x=0,0.2, \ldots, 10$. Hence, tabulate the function

$$
w=\frac{\left(x^{2}+3\right) \sin \pi x^{2} \sin ^{2} \pi x}{\left(x^{-2}+3\right)}
$$

Plot a graph of w over the range $0 \leq x \leq 10$.

16 Matrices-Two-Dimensional Arrays

Row and Column vectors are special cases of matrices.
An $m \times n$ matrix is a rectangular array of numbers having m rows and n columns. It is usual in a mathematical setting to include the matrix in either round or square brackets - we shall use square ones. For example, when $m=2, n=3$ we have a 2×3 matrix such as

$$
A=\left[\begin{array}{rrr}
5 & 7 & 9 \\
1 & -3 & -7
\end{array}\right]
$$

To enter such an matrix into Matlab we type it in row by row using the same syntax as for vectors:

Note the repeated use of the "dot" operators. Experiment with changing the axes (page 8), grids (page 6) and hold(page 7).

```
>> subplot(222),axis([[0 10 0 10}]
>> grid
>> grid
>> hold on
>> plot(x,v,'--'), hold off, plot(x,y,':')
```

Exercise 15.1 Enter the vectors

$$
\begin{gathered}
\underline{U}=[6,2,4], \quad \underline{V}=[3,-2,3,0] \\
\underline{W}=\left[\begin{array}{r}
3 \\
-4 \\
2 \\
-6
\end{array}\right], \quad \underline{Z}=\left[\begin{array}{l}
3 \\
2 \\
2 \\
7
\end{array}\right]
\end{gathered}
$$

into Matlab.

1. Which of the products
$\mathrm{U} * \mathrm{~V}, \mathrm{~V} * \mathrm{~W}, \mathrm{U} * \mathrm{~V}^{\prime}, \mathrm{V} * \mathrm{~W}^{\prime}, \mathrm{W} * \mathrm{Z}^{\prime}, \mathrm{U} . * \mathrm{~V}$
$\mathrm{U}^{\prime} * \mathrm{~V}, \mathrm{~V}^{\prime} * \mathrm{~W}, \mathrm{~W}{ }^{\prime} * \mathrm{Z}, \mathrm{U} . * \mathrm{~W}, \mathrm{~W} . * \mathrm{Z}, \mathrm{V} . * \mathrm{~W}$
is legal? State whether the legal products are row or column vectors and give the values of the legal results.
2. Tabulate the functions

$$
y=\left(x^{2}+3\right) \sin \pi x^{2}
$$

>> $A=\left[\begin{array}{lll}5 & 7 & 9\end{array}\right.$

$$
\left.\begin{array}{lll}
1 & -3 & -7
\end{array}\right]
$$

$\mathrm{A}=$

5	7	9
1	-3	-7

Rows may be separated by semi-colons rather than a new line:

```
>> B = [-1 2 5; 9 0 5]
```

$B=$
$\begin{array}{lll}-1 & 2 & 5\end{array}$
$9 \quad 0 \quad 5$
>> $C=[0,1 ; 3,-2 ; 4,2]$
C =
$\begin{array}{ll}0 & 1 \\ 3 & -2\end{array}$
$3-2$
>> $\mathrm{D}=[1: 5 ; 6: 10 ; 11: 2: 20]$
D =

1	2	3	4	5
6	7	8	9	10
11	13	15	17	19

So A and B are 2×3 matrices, C is 3×2 and D is 3×5.
In this context, a row vector is a $1 \times n$ matrix and a column vector a $m \times 1$ matrix.

16.1 Size of a matrix

We can get the size (dimensions) of a matrix with the command size

```
>> size(A), size(x)
ans =
    23
ans =
    31
>> size(ans)
ans =
    12
```

So A is 2×3 and x is 3×1 (a column vector). The last command size(ans) shows that the value returned by size is itself a 1×2 matrix (a row vector). We can save the results for use in subsequent calculations.

```
>> [r c] = size(A'), S = size(A')
r =
    3
c =
    2
S =
    3 2
```


16.2 Transpose of a matrix

Transposing a vector changes it from a row to a column vector and vice versa (see §8.4). The extension of this idea to matrices is that transposing interchanges rows with the corresponding columns: the 1st row becomes the 1 st column, and so on.

```
>> D, D'
D =
\begin{tabular}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 13 & 15 & 17 & 19
\end{tabular}
ans =
    1 6 11
    2 7 13
    3 8 15
    4 9 17
>> size(D), size(D')
ans =
ans = 3 5 5 % 3
```


16.3 Special Matrices

Matlab provides a number of useful built-in matrices of any desired size.
ones (m, n) gives an $m \times n$ matrix of 1 's,
> $P=$ ones $(2,3)$
$P=$
$1 \quad 1 \quad 1$
$1 \quad 1 \quad 1$
zeros (m, n) gives an $m \times n$ matrix of 0 's,
>> $Z=\operatorname{zeros}(2,3), \operatorname{zeros}\left(\operatorname{size}\left(\mathrm{P}^{\prime}\right)\right)$
Z =
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
ans $=$
$0 \quad 0$
00
00
The second command illustrates how we can construct a matrix based on the size of an existing one. Try ones (size (D)).
An $n \times n$ matrix that has the same number of rows and columns and is called a square matrix.
A matrix is said to be symmetric if it is equal to its transpose (i.e. it is unchanged by transposition):

```
>> \(S=\left[\begin{array}{llllllll}2 & -1 & 0 ; & -1 & 2 & -1 ; & 0 & -1\end{array}\right]\),
S =
    \(\begin{array}{lll}2 & -1 & 0\end{array}\)
    \(\begin{array}{lll}-1 & 2 & -1\end{array}\)
    \(\begin{array}{lll}0 & -1 & 2\end{array}\)
> \(\mathrm{St}=\mathrm{S}\),
St \(=\)
\(\begin{array}{lll}2 & -1 & 0\end{array}\)
        \(\begin{array}{lll}-1 & 2 & -1\end{array}\)
>> S-St
ans =
\begin{tabular}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
```


16.4 The Identity Matrix

The $n \times n$ identity matrix is a matrix of zeros except for having ones along its leading diagonal (top left to bottom right). This is called eye(n) in Matlab (since mathematically it is usually denoted by I.

```
>> I = eye(3), x = [8; -4; 1], I*x
I =
        1 0 0
        0}1
        0 0 1
x =
    8
        -4
        1
ans =
    8
```

Notice that multiplying the 3×1 vector x by the 3×3 identity I has no effect (it is like multiplying a number by 1).

16.5 Diagonal Matrices

A diagonal matrix is similar to the identity matrix except that its diagonal entries are not necessarily equal to 1 .

$$
D=\left[\begin{array}{rrr}
-3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

is a 3×3 diagonal matrix. To construct this in Matlab, we could either type it in directly

```
>>D = [-3 0 0; 0 4 0; 0 0 2]
D =
\begin{tabular}{rrr}
-3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{tabular}
```

but this becomes impractical when the dimension is large (e.g. a 100×100 diagonal matrix). We then use the diag function. We first define a vector d , say, containing the values of the diagonal entries (in order) then $\operatorname{diag}(\mathrm{d})$ gives the required matrix.

```
>> d = [-3 4 2 2], D = diag(d)
d =
    -3 4 2
D =
    -3
```

On the other hand, if A is any matrix, the command diag(A) extracts its diagonal entries:
$\gg F=\left[\begin{array}{lllllllllll}0 & 1 & 8 & 7 ; & 3 & -2 & -4 & 2 ; & 4 & 2 & 1\end{array}\right]$
$\mathrm{F}=$

0	1	8	7
3	-2	-4	2
4	2	1	1

>> $\operatorname{diag}(F)$
ans =
0
-2
1
Notice that the matrix does not have to be square.

16.6 Building Matrices

It is often convenient to build large matrices from smaller ones:
>> $C=[01 ; 3-2 ; 42] ; x=[8 ;-4 ; 1]$;
>> $G=\left[\begin{array}{ll}C & x\end{array}\right]$
$\mathrm{G}=$

0	1	8
3	-2	-4
4	2	1
>> $\mathrm{A}, \mathrm{B}, \mathrm{H}=[\mathrm{A} ; \mathrm{B}]$		
$\mathrm{A}=$		
5	7	9
1	-3	-7
$B=$		
-1	2	5
9	0	5
ans $=$		
5	7	9
1	-3	-7
-1	2	5
9	0	5

so we have added an extra column (x) to C in order to form G and have stacked A and B on top of each other to form H .

```
>> J = [1:4; 5:8; 9:12; 20 0 5 4]
J =
\begin{tabular}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
20 & 0 & 5 & 4
\end{tabular}
>> K = [ diag(1:4) J; J' zeros(4,4)]
K =
\begin{tabular}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\
0 & 2 & 0 & 0 & 5 & 6 & 7 & 8 \\
0 & 0 & 3 & 0 & 9 & 10 & 11 & 12 \\
0 & 0 & 0 & 4 & 20 & 0 & 5 & 4 \\
1 & 5 & 9 & 20 & 0 & 0 & 0 & 0 \\
2 & 6 & 10 & 0 & 0 & 0 & 0 & 0 \\
3 & 7 & 11 & 5 & 0 & 0 & 0 & 0 \\
4 & 8 & 12 & 4 & 0 & 0 & 0 & 0
\end{tabular}
```

The command spy (K) will produce a graphical display of the location of the nonzero entries in K (it will also give a value for nz - the number of nonzero entries):

```
>> spy(K), grid
```


16.7 Tabulating Functions

This has been addressed in earlier sections but we are now in a position to produce a more suitable table format.

Example 16.1 Tabulate the functions $y=4 \sin 3 x$ and $u=3 \sin 4 x$ for $x=0,0.1,0.2, \ldots, 0.5$.

```
>> x = 0:0.1:0.5;
>> y = 4*sin(3*x); u = 3*sin(4*x);
```

>> [$x^{\prime} y^{\prime} u^{\prime}$]
ans =

0	0	0
0.1000	1.1821	1.1683
0.2000	2.2586	2.1521
0.3000	3.1333	2.7961
0.4000	3.7282	2.9987
0.5000	3.9900	2.7279

Note the use of transpose (') to get column vectors. (we could replace the last command by [x; y; u;]') We could also have done this more directly:

```
>> x = (0:0.1:0.5)';
>> [x 4*sin(3*x) 3*sin(4*x)]
```


16.8 Extracting Bits of Matrices

We may extract sections from a matrix in much the same way as for a vector (page 4).
Each element of a matrix is indexed according to which row and column it belongs to. The entry in the i th row and j th column is denoted mathematically by $A_{i, j}$ and, in Matlab, by A(i,j). So

```
>> J
J =
\begin{tabular}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
20 & 0 & 5 & 4
\end{tabular}
>> J(1,1)
ans =
    1
>> J (2,3)
ans =
    7
>> J (4,3)
ans =
    5
>> J (4,5)
??? Index exceeds matrix dimensions.
>> J (4,1) = J (1,1) + 6
J =
\begin{tabular}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{tabular}
    9 10}11
    7 0 5 4
>> J (1,1) = J (1,1) - 3*J (1,2)
J =
\begin{tabular}{rrrr}
-5 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
7 & 0 & 5 & 4
\end{tabular}
```

In the following examples we extract i) the 3rd column, ii) the 2nd and 3rd columns, iii) the 4 th row, and iv) the "central" 2×2 matrix. See $\S 8.1$.
>> $\mathrm{J}(:, 3)$
\% 3rd column
ans =
3
7
11
5
>> $\mathrm{J}(:, 2: 3) \quad \%$ columns 2 to 3
ans =

6	7
10	11

Thus, : on its own refers to the entire column or row depending on whether it is the first or the second index.

16.9 Dot product of matrices (.*)

The dot product works as for vectors: corresponding elements are multiplied together - so the matrices involved must have the same size.

```
>> A, B
\(\mathrm{A}=\)
        \(\begin{array}{lll}5 & 7 & 9\end{array}\)
            \(\begin{array}{lll}1 & -3 & -7\end{array}\)
B =
            \(\begin{array}{lll}-1 & 2 & 5\end{array}\)
            \(9 \quad 0 \quad 5\)
>> A.*B
ans =
\begin{tabular}{rrr}
-5 & 14 & 45 \\
9 & 0 & -35
\end{tabular}
>> A. *C
??? Error using ==> .*
Matrix dimensions must agree.
>> A.*C'
ans =
\(0 \quad 21 \quad 36\)
```


16.10 Matrix-vector products

We turn next to the definition of the product of a matrix with a vector. This product is only defined for column vectors that have the same number of entries as the matrix has columns. So, if A is an $m \times n$ matrix and \underline{x} is a column vector of length n, then the matrix-vector $A \underline{x}$ is legal.

An $m \times n$ matrix times an $n \times 1$ matrix \Rightarrow a $m \times 1$ matrix.
We visualise A as being made up of m row vectors stacked on top of each other, then the product corresponds to taking the scalar product (See $\S 14.1$) of each row of A with the vector \underline{x} : The result is a column vector with m entries.

$$
\begin{aligned}
A \underline{x} & =\left[\begin{array}{|rr|}
\hline 5 & 7 \\
\hline 1 & -3 \\
\hline 1 & -7 \\
\hline
\end{array}\right]\left[\begin{array}{r}
8 \\
-4 \\
1 \\
\hline
\end{array}\right] \\
& =\left[\begin{array}{c}
5 \times 8+7 \times(-4)+9 \times 1 \\
1 \times 8+(-3) \times(-4)+(-7) \times 1
\end{array}\right] \\
& =\left[\begin{array}{l}
21 \\
13
\end{array}\right]
\end{aligned}
$$

It is somewhat easier in Matlab:
> $A=\left[\begin{array}{llllll}5 & 7 & 9 ; & 1 & -3 & -7\end{array}\right]$
A =
$\begin{array}{rrr}5 & 7 & 9 \\ 1 & -3 & -7\end{array}$
>> $x=[8 ;-4 ; 1]$
$\mathrm{x}=$
8
-4
1
>> A*x
ans =
21
13

$$
(m \times n) \text { times }(n \times 1) \Rightarrow(m \times 1)
$$

>> $\mathrm{x} * \mathrm{~A}$
??? Error using ==> *
Inner matrix dimensions must agree.
Unlike multiplication in arithmetic, $A * x$ is not the same as $\mathrm{x} * \mathrm{~A}$.

16.11 Matrix-Matrix Products

To form the product of an $m \times n$ matrix A and a $n \times p$ matrix B , written as $A B$, we visualise the first matrix (A) as being composed of m row vectors of length n stacked on top of each other while the second (B) is visualised as being made up of p column vectors of length n :

The entry in the i th row and j th column of the product is then the scalarproduct of the i th row
of A with the j th column of B. The product is an $m \times p$ matrix:

$$
(m \times n) \text { times }(n \times p) \Rightarrow(m \times p)
$$

Check that you understand what is meant by working out the following examples by hand and comparing with the Matlab answers.

```
\(\gg A=\left[\begin{array}{cccccc}5 & 7 & 9 ; & 1 & -3 & -7\end{array}\right]\)
\(\mathrm{A}=\)
            \(\begin{array}{lll}5 & 7 & 9\end{array}\)
            \(\begin{array}{lll}1 & -3 & -7\end{array}\)
\(\gg B=[0,1 ; 3,-2 ; 4,2]\)
\(\mathrm{B}=\)
            01
            \(3-2\)
            \(4 \quad 2\)
> \(\mathrm{C}=\mathrm{A} * \mathrm{~B}\)
C =
            \(57 \quad 9\)
            \(\begin{array}{ll}-37 & -7\end{array}\)
> \(\mathrm{D}=\mathrm{B} * \mathrm{~A}\)
D =
\begin{tabular}{rrr}
1 & -3 & -7 \\
13 & 27 & 41
\end{tabular}
            \(22 \quad 22 \quad 22\)
>> \(\mathrm{E}=\mathrm{B}^{\prime} * \mathrm{~A}^{\prime}\)
E =
            \(57 \quad-37\)
            \(9 \quad-7\)
```

We see that $E=C$ ' suggesting that
$\left(\mathrm{A}^{*} \mathrm{~B}\right)^{\prime}=\mathrm{B}^{*}{ }^{*}{ }^{\prime}$
Why is $B * A$ a 3×3 matrix while $A * B$ is 2×2 ?

17 Fireworks

As light relief, use your xterm window to copy three files to your area:
cp ~dfg/Matlab/comet*.m .

```
```

```
cp ~dfg/Matlab/fireworks.m .
```

```
```

cp ~dfg/Matlab/fireworks.m .

```
then, in Matlab,
>> fireworks
A graphics window will pop up, in which you should
click the left mouse button on Fire.
'To end the demo, click on Fire again, then on Done.


\section*{18 Loops}

There are occasions that we want to repeat a segment of code a number of different times (such occasions are less frequent than other programming languages because of the : notation).

Example 18.1 Draw graphs of \(\sin (n \pi x)\) on the interval \(-1 \leq x \leq 1\) for \(n=1,2, \ldots, 8\).

We could do this by giving 8 separate plot commands but it is much easier to use a loop. The simplest form would be
```

>> x = -1:.05:1;
>> for n = 1:8
subplot(4,2,n), plot(x,\operatorname{sin}(n*pi*x))
end

```

All the commands between the lines starting "for" and "end" are repeated with \(n\) being given the value 1 the first time through, 2 the second time, and so forth, until \(n=8\). The subplot constructs a \(4 \times 2\) array of subwindows and, on the \(n\)th time through the loop, a picture is drawn in the \(n\)th subwindow. The commands
```

>> x = -1:.05:1;
>> for n = 1:2:8
subplot(4,2,n), plot(x,sin(n*pi*x))
subplot(4,2,n+1), plot(x,cos(n*pi*x))
end

```
draw \(\sin n \pi x\) and \(\cos n \pi x\) for \(n=1,3,5,7\) alongside each other.
We may use any legal variable name as the "loop counter" ( n in the above examples) and it can be made to run through all of the values in a given vector (1:8 and 1:2:8 in the examples).
We may also use for loops of the type
```

>> for counter = [$$
\begin{array}{llllll}{23}&{11}&{19}&{5.4}&{6}\end{array}
$$]
.......
end

```
which repeats the code as far as the end with counter=23 the first time, counter=11 the second time, and so forth.

Example 18.2 The Fibonnaci sequence starts off with the numbers 0 and 1 , then succeeding terms are the sum of its two immediate predecessors. Mathematically, \(f_{1}=0, f_{2}=1\) and
\[
f_{n}=f_{n-1}+f_{n-2}, \quad n=3,4,5, \ldots
\]

Test the assertion that the ratio \(f_{n} / f_{n-1}\) of two successive values approaches the golden ratio \((\sqrt{5}+1) / 2\) \(=1.6180 \ldots\)..
```

>> F(1) = 0; F(2) = 1;
>> for i = 3:20
F(i) = F(i-1) + F(i-2);
end
>> plot(1:19, F(2:20)./F(1:19),'0')
>> hold on
>> plot(1:19, F(2:20)./F(1:19),'-')
>> plot([0 20], (sqrt(5)+1)/2*[1,1],'--')

```

The last of these commands produced the dashed horizontal line.


Example 18.3 Produce a list of the values of the sums
\[
\begin{aligned}
& S_{20}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{20^{2}} \\
& S_{21}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{20^{2}}+\frac{1}{21^{2}} \\
& \vdots \\
& S_{100}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{20^{2}}+\frac{1}{21^{2}}+\cdots+\frac{1}{100^{2}}
\end{aligned}
\]

There are a total of 81 sums. The first can be computed using sum (1./(1:20). ^2) (The function sum with a vector argument sums its components. See §21.2].) A suitable piece of Matlab code might be
```

>> S = zeros(100,1);
>> S(20) = sum(1./(1:20).^2);
>> for n = 21:100
>> S(n) = S(n-1) + 1/n^2;
>> end
>> clg; plot(S,'.',[20 100],[1,1]*pi^2/6,'-')
>> axis([20 100 1.5 1.7])
>> [(98:100)' S(98:100)]
ans =
98.0000 1.6364
99.0000 1.6365
100.0000 1.6366

```
where a column vector \(S\) was created to hold the answers. The first sum was computed directly using the sum command then each succeeding sum was found by adding \(1 / n^{2}\) to its predecessor. The little table at the end shows the values of the last three
sums - it appears that they are approaching a limit (the value of the limit is \(\pi^{2} / 6=1.64493 \ldots\) ).

Exercise 18.1 Repeat Example 18.3 to include 181 sums (i.e. the final sum should include the term \(1 / 200^{2}\).)

\section*{19 Logicals}

Matlab represents true and false by means of the integers 0 and 1.
```

true = 1, false = 0

```

If at some point in a calculation a scalar \(x\), say, has been assigned a value, we may make certain logical tests on it:
\(\mathrm{x}==2\) is x equal to 2 ?
\(\mathrm{x}^{\sim}=2\) is x not equal to 2 ?
\(\mathrm{x}>2\) is x greater than 2 ?
\(\mathrm{x}<2\) is x less than 2 ?
\(\mathrm{x}>=2\) is x greater than or equal to 2 ?
\(\mathrm{x}<=2\) is x less than or equal to 2 ?
Pay particular attention to the fact that the test for equality involves two equal signs ==.
```

>> x = pi
x =
3.1416
>> x ~}=3, x ~ = pi
ans =
1
ans =
0

```

When x is a vector or a matrix, these tests are performed elementwise:
```

x =
-2.0000 3.1416 5.0000
-1.0000 0 1.0000
>> x == 0
ans =
0 0 0
0 1 0
>> x > 1, x >=-1
ans =
0}
0}
ans =
0}
1 1 1
>> y = x>=-1, x > y
y =
0}
1 1 1
ans =

0	1	1

```

We may combine logical tests, as in
>> \(x\)
\(\mathrm{x}=\)
\(\begin{array}{rrr}-2.0000 & 3.1416 & 5.0000 \\ -5.0000 & -3.0000 & -1.0000\end{array}\)
>> \(x>3 \& x<4\)
ans \(=\)
\(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\)
>> \(x\) > \(3 \mid x=-3\)
ans =
\begin{tabular}{lll}
0 & 1 & 1 \\
0 & 1 & 0
\end{tabular}

As one might expect, \& represents and and (not so clearly) the vertical bar I means or; also ~ means not as in \({ }^{\sim}=(\) not equal \(), \sim(x>0)\), etc.
\(\gg \mathrm{x}>3|\mathrm{x}==-3| \mathrm{x}<=-5\)
ans =
\(\begin{array}{lll}0 & 1 & 1\end{array}\)
\(1 \quad 1 \quad 0\)
One of the uses of logical tests is to "mask out" certain elements of a matrix.
```

>> $\mathrm{x}, \mathrm{L}=\mathrm{x}>=0$
x =
$-2.0000 \quad 3.1416 \quad 5.0000$
$-5.0000 \quad-3.0000 \quad-1.0000$
$\mathrm{L}=$
$\begin{array}{lll}0 & 1 & 1\end{array}$
$\begin{array}{lll}0 & 1 & 1\end{array}$
>> pos $=x . * L$
pos =

0	3.1416	5.0000
0	0	0

```
so the matrix pos contains just those elements of x that are non-negative.
\(\gg x=0: 0.05: 6 ; y=\sin (p i * x) ; Y=(y>=0) . * y ;\)
>> plot( \(x, y,{ }^{\prime}\) ', \(x, Y,{ }^{\prime}{ }^{\prime}\) )


\subsection*{19.1 While Loops}

There are some occasions when we want to repeat a section of Matlab code until some logical condition is satisfied, but we cannot tell in advance how many times we have to go around the loop. This we can do with a while...end construct.

Example 19.1 What is the greatest value of \(n\) that can be used in the sum
\[
1^{2}+2^{2}+\cdots+n^{2}
\]
and get a value of less than 100?
```

>> S = 1; n = 1;
>> while S+ (n+1)^2 < 100
n = n+1; S = S + n^2;
end
>> [n, S]
ans =
6 91

```

The lines of code between while and end will only be executed if the condition \(\mathrm{S}+(\mathrm{n}+1)^{\wedge} 2<100\) is true.

Exercise 19.1 Replace 100 in the previous example by 10 and work through the lines of code by hand. You should get the answers \(n=2\) and \(S=5\).
Exercise 19.2 Type the code from Example19.1 into a script-file named WhileSum.m (See §13.)
A more typical example is
Example 19.2 Find the approximate value of the root of the equation \(x=\cos x\). (See Example 10.1.)
We may do this by making a guess \(x_{1}=\pi / 4\), say, then computing the sequence of values
\[
x_{n}=\cos x_{n-1}, \quad n=2,3,4, \ldots
\]
and continuing until the difference between two successive values \(\left|x_{n}-x_{n-1}\right|\) is small enough.

\section*{Method 1:}
```

>> x = zeros(1,20); x(1) = pi/4;
>> n = 1; d = 1;
>> while d > 0.001
n = n+1; x (n) = cos(x(n-1));
d = abs(x(n) - x(n-1));
end
n,x
n}
14
x =
Columns 1 through 7
0.7854 0.7071 0.7602 0.7247 0.7487 0.7326 0.7435
Columns 8 through 14
0.7361 0.7411 0.7377 0.7400 0.7385 0.7395 0.7388
Columns 15 through }2
0}00\mp@code{0

```

There are a number of deficiencies with this program. The vector x stores the results of each iteration but we don't know in advance how many there may be. In any event, we are rarely interested in the intermediate values of x , only the last one. Another problem is that we may never satisfy the condition \(d \leq 0.001\), in which case the program will run forever-we should place a limit on the maximum number of iterations.
Incorporating these improvements leads to

\section*{Method 2:}
```

>> xold = pi/4; n = 1; d = 1;
>> while d > 0.001 \& n < 20
n = n+1; xnew = cos(xold);
d = abs(xnew - xold);
xold = xnew;
end
>> [n, xnew, d]
ans =
14.0000 0.7388 0.0007

```

We continue around the loop so long as \(d>0.001\) and \(n<20\). For greater precision we could use the condition \(d>0.0001\), and this gives
>> [n, xnew, d]
ans \(=\)
\(19.0000 \quad 0.7391 \quad 0.0001\)
from which we may judge that the root required is \(x=0.739\) to 3 decimal places.
The general form of while statement is
```

while a logical test
Commands to be executed
when the condition is true
end

```
19.2 if...then...else...end

This allows us to execute different commands depending on the truth or falsity of some logical tests. To test whether or not \(\pi^{e}\) is greater than, or equal to, \(e^{\pi}\) :
```

>> a = pi^exp(1); c = exp(pi);
>> if a >= c
b = sqrt(a^2 - c^2)
end

```
so that b is assigned a value only if \(a \geq c\). There is no output so we deduce that \(a=\pi^{e}<c=e^{\pi}\). A more common situation is
```

>> if a >= c
b = sqrt(a^2 - c^2)
else

```
```

 \(\mathrm{b}=0\)
 end
 $\mathrm{b}=$
0

```
which ensures that b is always assigned a value and confirming that \(a<c\).
A more extended form is
```

>> if a >= c
b = sqrt(a^2 - c^2)
elseif a^c > c^a
b = c^a/a^c
else
b = a^c/c^a
end
b =
0.2347

```

Exercise 19.3 Which of the above statements assigned a value to b?

The general form of the if statement is
```

if logical test 1
Commands to be executed if test
1 is true
elseif logical test 2
Commands to be executed if test
2 is true but test 1 is false
\vdots
end

```

\section*{20 Function m-files}

These are a combination of the ideas of script mfiles (§7) and Mathematical functions.

Example 20.1 The area, A, of a triangle with sides of length \(a, b\) and \(c\) is given by
\[
A=\sqrt{s(s-a)(s-b)(s-c)}
\]
where \(s=(a+b+c) / 2\). Write a Matlab function that will accept the values \(a, b\) and \(c\) as inputs and return the value os \(A\) as output.

The main steps to follow when defining a Matlab function are:
1. Decide on a name for the function, making sure that it does not conflict with a name that is already used by Matlab. In this example the name of the function is to be area, so its definition will be saved in a file called area.m
2. The first line of the file must have the format:
```

function [list of outputs]
= function_name(list of inputs)

```

For our example, the output \((A)\) is a function of the three variables (inputs) \(a, b\) and \(c\) so the first line should read
```

function [A] = area(a,b,c)

```
3. Document the function. That is, describe briefly the purpose of the function and how it can be used. These lines should be preceded by \% which signify that they are comment lines that will be ignored when the function is evaluated.
4. Finally include the code that defines the function. This should be interspersed with sufficient comments to enable another user to understand the processes involved.

The complete file might look like:
```

function [A] $=\operatorname{area}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
\% Compute the area of a triangle whose
\% sides have length a, b and c.
\% Inputs:
\% a,b,c: Lengths of sides
\% Output:
\% A: area of triangle
\% Usage:
$\% \quad$ Area $=\operatorname{area}(2,3,4)$;
\% Written by dfg, Oct 14, 1996.
$\mathrm{s}=(\mathrm{a}+\mathrm{b}+\mathrm{c}) / 2$;
$\mathrm{A}=\operatorname{sqrt}(\mathrm{s} *(\mathrm{~s}-\mathrm{a}) *(\mathrm{~s}-\mathrm{b}) *(\mathrm{~s}-\mathrm{c}))$;
$\% \% \% \% \% \% \% \%$ end of area $\% \% \% \% \% \% \% \% \% \% \%$

```

The command
```

>> help area

```
will produce the leading comments from the file:
```

Compute the area of a triangle whose
sides have length a, b and c.
Inputs:
a,b,c: Lengths of sides
Output:
A: area of triangle
Usage:
Area = area(2,3,4);
Written by dfg, Oct 14, 1996.

```

To evalute the area of a triangle with side of length \(10,15,20\) :
```

>> Area = area (10, 15,20)
Area =

```
    72.6184
where the result of the computation is assigned to the variable Area. The variable s used in the definition of the function above is a "local variable": its value is local to the function and cannot be used outside:

\section*{>> s}
??? Undefined function or variable s.
If we were to be interested in the value of \(s\) as well as \(A\), then the first line of the file should be changed to
```

function [A,s] = area(a,b,c)

```
where there are two output variables.
This function can be called in several different ways:
1. No outputs assigned
>> area \((10,15,20)\)
ans =
72.6184
gives only the area (first of the output variables from the file) assigned to ans; the second output is ignored.
2. One output assigned
```

>> Area = area(10, 15, 20)
Area =
72.6184

```
again the second output is ignored.
3. Two outputs assigned
```

>> [Area, hlen] = area(10,15,20)
Area =
72.6184
hlen =
22.5000

```

Exercise 20.1 In any triangle the sum of the lengths of any two sides cannot exceed the length of the third side. The function area does not check to see if this condition is fulfilled (try area (1,2,4)). Modify the file so that it computes the area only if the sides satisfy this condition.

\subsection*{20.1 Examples of functions}

We revisit the problem of computing the Fibonnaci sequence defined by \(f_{1}=0, f_{2}=1\) and
\[
f_{n}=f_{n-1}+f_{n-2}, \quad n=3,4,5, \ldots
\]

We want to construct a function that will return the \(n\)th number in the Fibinnaci sequence \(f_{n}\).
- Input: Integer \(n\)
- Output: \(f_{n}\)

We shall describe four possible functions and try to assess which provides the best solution.

Method 1: File ~dfg/Matlab/doc/Fib1.m
```

function f = Fib1(n)
% Returns the nth number in the
% Fibonacci sequence.
F=zeros(1,n+1);
F(2) = 1;
for i = 3:n+1
F(i) = F(i-1) + F(i-2);
end
f = F(n);

```

This code resembles that given in Example 18.2. We have simply enclosed it in a function \(m\)-file and given it the appropriate header,

Method 2: File ~dfg/Matlab/doc/Fib2.m The first version was rather wasteful of memory-it saved all the entries in the sequence even though we only required the last one for output. The second version removes the need to use a vector.
```

function f = Fib2(n)
% Returns the nth number in the
% Fibonacci sequence.
if n==1
f = 0;
elseif n==2
f = 1;
else
f1 = 0; f2 = 1;
for i = 2:n-1
f = f1 + f2;
f1=f2; f2 = f;
end
end

```

Method 3: File: ~dfg/Matlab/doc/Fib3.m This version makes use of an idea called "recursive programming" - the function makes calls to itself.
function \(f=F i b 3(n)\)
\% Returns the nth number in the
\% Fibonacci sequence.
if \(\mathrm{n}==1\)
    f = 0 ;
elseif \(\mathrm{n}==2\)
    f = 1;
else
    \(f=F i b 3(n-1)+F i b 3(n-2) ;\)
end

Method 4: File ~dfg/Matlab/doc/Fib4.m The final version uses matrix powers. The vector y has two components, \(\underline{y}=\left[\begin{array}{c}f_{n} \\ f_{n+1}\end{array}\right]\).
function \(f=\operatorname{Fib4}(\mathrm{n})\)
\% Returns the nth number in the
\% Fibonacci sequence.
\(\mathrm{A}=\left[\begin{array}{lll}0 & 1 ; 1 & 1\end{array}\right]\);
\(y=A^{\wedge} n *[1 ; 0] ;\)
\(\mathrm{f}=\mathrm{y}\) (1) ;

Assessment: One may think that, on grounds of style, the 3rd is best (it avoids the use of loops) followed by the second (it avoids the use of a vector). The situation is much different when it cames to speed of execution. When \(n=20\) the time taken by each of the methods is (in seconds)
\begin{tabular}{cr}
\hline Method & Time \\
\hline 1 & 0.0118 \\
2 & 0.0157 \\
3 & 36.5937 \\
4 & 0.0078 \\
\hline
\end{tabular}

It is impractical to use Method 3 for any value of \(n\) much larger than 10 since the time taken by method 3 almost doubles whenever \(n\) is increased by just 1 . When \(n=150\)
\begin{tabular}{cr}
\hline Method & Time \\
\hline 1 & 0.0540 \\
2 & 0.0891 \\
3 & - \\
4 & 0.0106 \\
\hline
\end{tabular}

Clearly the 4th method is much the fastest.

\section*{21 Further Built-in Functions}

\subsection*{21.1 Rounding Numbers}

There are a variety of ways of rounding and chopping real numbers to give integers. Use the definitions given in the table in \(\S 26\) on page 26 in order to understand the output given below:
```

>> x = pi*(-1:3), round(x)
x =
-3.1416 0 3.1416 6.2832
ans =
-3 0
>> fix(x)
ans =
-3 0
>> floor(x)
ans =
-4 0
>> ceil(x)
ans =
-3 0
>> sign(x), rem(x,3)
ans =

```
```

ans =
-0.1416 0}00.1416 0.2832

```
0.4248

Do "help round" for help information.

\subsection*{21.2 The sum Function}

The "sum" applied to a vector adds up its components (as in sum (1:10)) while, for a matrix, it adds up the components in each column and returns a row vector. sum (sum (A)) then sums all the entries of \(A\).
```

>> A = [1:3; 4:6;7:9]
A =
1 2 3
4 5 6
7 8 9
>> s = sum(A), ss = \operatorname{sum}(\operatorname{sum}(A))
s =
12 15 18
ss =
4 5
>> x = pi/4*(1:3)';
>> A = [sin(x), sin(2*x), sin(3*x)]/sqrt(2)
> A =

0.5000	0.7071	0.5000
0.7071	0.0000	-0.7071

 0.5000 -0.7071 0.5000
    ```
```

>> s1 = sum(A.^2), s2 = sum(sum(A.^2))
s1 =
1.0000 1.0000 1.0000
s2 =
3.0000

```

The sums of squares of the entries in each column of \(A\) are equal to 1 and the sum of squares of all the entries is equal to 3 .
```

>> $A * A$,
ans =
1.00000
$\begin{array}{lll}0 & 1.0000 & 0.0000 \\ 0 & 0.0000 & 1.0000\end{array}$
> $\mathrm{A}^{\prime} * \mathrm{~A}$
ans =
1.00000
$\begin{array}{lll}0 & 1.0000 & 0.0000\end{array}$
$0 \quad 0.0000 \quad 1.0000$

```

It appears that the products \(A A^{\prime}\) and \(A^{\prime} A\) are both equal to the identity:
```

>> A*A' - eye(3)
ans =
1.0e-15 *

```
```

 -0.2220 0 0
 0 -0.2220 0.0555
 0 0.0555 -0.2220
 >> A'*A - eye(3)
ans =
1.0e-15 *
-0.2220

```

This is confirmed since the differences are at roundoff error levels (less than \(10^{-15}\) ). A matrix with this property is called an orthogonal matrix.

\section*{21.3 max \& min}

These functions act in a similar way to sum. If x is a vector, then \(\max (\mathrm{x})\) returns the largest element in x
\(\gg x=\left[\begin{array}{llll}1.3 & -2.4 & 0 & 2.3\end{array}\right], \max (x), \max (\operatorname{abs}(x))\) \(\begin{array}{llll}\mathrm{x}= & & \\ 1.3000 & -2.4000 & 0 & 2.3000\end{array}\)
ans \(=\)
    2.3000
ans =
    2.4000
>> \([m, j]=\max (x)\)
\(\mathrm{m}=\)
    2.3000
j \(=\)
    4

When we ask for two outputs, the first gives us the maximum entry and the second the index of the maximum element.
For a matrix, \(A, \max (A)\) returns a row vector containing the maximum element from each column. Thus to find the largest element in A we have to use \(\max (\max (A))\).

\subsection*{21.4 Random Numbers}

The function rand \((\mathrm{m}, \mathrm{n})\) produces an \(m \times n\) matrix of random numbers, each of which is in the range 0 to 1. rand on its own produces a single random number.
```

>> y = rand, Y = rand (2,3)
y =
0.9191
Y =
0.6262
0.7446

```

Repeating these commands will lead to different answers.
Example: Write a function-file that will simulate \(n\) throws of a pair of dice.

This requires random numbers that are integers in the range 1 to 6 . Multiplying each random number by 6 will give a real number in the range 0 to 6 ; rounding these to whole numbers will not be correct since it will then be possible to get 0 as an answer. We need to use
```

floor(1 + 6*rand)

```

Recall that floor takes the largest integer that is smaller than a given real number (see Table 1, page 26).
File: ~dfg/Matlab/doc/dice.m
```

function [d] = dice(n)
% simulates "n" throws of a pair of dice
% Input: n, the number of throws
% Output: an n times 2 matrix, each row
% referring to one throw.
%
% Useage: T = dice(3)
d = floor(1 + 6*rand(n,2));
%% end of dice
>> dice(3)
ans =
6 1
2 3
4 1
>> sum(dice(100))/100
ans =
3.8500 3.4300

```

The last command gives the average value over 100 throws (it should have the value 3.5).

\section*{21.5 find for vectors}

The function "find" returns a list of the positions (indices) of the elements of a vector satisfying a given condition. For example,
```

>> x = -1:.05:1;
>> y = sin(3*pi*x).*exp(-x.^2); plot(x,y,':')
>> k = find(y > 0.2)
k =
Columns 1 through 12
9
Columns 13 through 15
37 38 39
>> hold on, plot(x(k),y(k),'o')
>> km = find(x>0.5 \& y<0)
km =
32 33 34
>> plot(x(km),y(km),'-')

```


\section*{21.6 find for matrices}

The find-function operates in much the same way for matrices:
```

>>A}=[\begin{array}{llllllllllllll}{-2 3 4 4; 0 5 -1 6; 6 8 0 1]}
A =

| -2 | 3 | 4 | 4 |
| ---: | ---: | ---: | ---: |
| 0 | 5 | -1 | 6 |
| 6 | 8 | 0 | 1 |

>> k = find(A==0)
k =
2
9

```

Thus, we find that A has elements equal to 0 in positions 2 and 9 . To interpret this result we have to recognise that "find" first reshapes A into a column vector-this is equivalent to numbering the elements of A by columns as in
\[
\begin{array}{llll}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{array}
\]
\[
\gg \mathrm{n}=\operatorname{find}(\mathrm{A}<=0)
\]
\[
\mathrm{n}=
\]
\[
1
\]
\[
2
\]
\[
8
\]
\[
9
\]
>> A (n)
ans =
\(-2\)
0
-1
0
Thus, n gives a list of the locations of the entries in A that are \(\leq 0\) and then \(\mathrm{A}(\mathrm{n})\) gives us the values of the elements selected.
```

>> m = find(A' == 0)
m =
5
1 1

```

Since we are dealing with A', the entries are numbered by rows.

\section*{22 Plotting Surfaces}

A surface is defined mathematically by a function \(f(x, y)\)-corresponding to each value of \((x, y)\) we compute the height of the function by
\[
z=f(x, y)
\]

In order to plot this we have to decide on the ranges of \(x\) and \(y\)-suppose \(2 \leq x \leq 4\) and \(1 \leq y \leq 3\). This gives us a square in the \((x, y)\)-plane. Next, we need to choose a grid on this domain; Figure 5 shows the grid with intervals 0.5 in each direction. Finally, we


Figure 5: An example of a 2D grid
have to evaluate the function at each point of the grid and "plot" it.
Suppose we choose a grid with intervals 0.5 in each direction for illustration. The \(x-\) and \(y\)-coordinates of the grid lines are
\(x=2: 0.5: 4 ; \quad y=1: 0.5: 3 ;\)
in Matlab notation. We construct the grid with meshgrid:
>> \([\mathrm{X}, \mathrm{Y}]=\) meshgrid(2:.5:4, 1:.5:3);
> X
X =
\begin{tabular}{lllll}
2.0000 & 2.5000 & 3.0000 & 3.5000 & 4.0000 \\
2.0000 & 2.5000 & 3.0000 & 3.5000 & 4.0000 \\
2.0000 & 2.5000 & 3.0000 & 3.5000 & 4.0000 \\
2.0000 & 2.5000 & 3.0000 & 3.5000 & 4.0000 \\
2.0000 & 2.5000 & 3.0000 & 3.5000 & 4.0000 \\
\(Y\) & & & & \\
\(=\) & & & & \\
1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
1.5000 & 1.5000 & 1.5000 & 1.5000 & 1.5000 \\
2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 \\
2.5000 & 2.5000 & 2.5000 & 2.5000 & 2.5000 \\
3.0000 & 3.0000 & 3.0000 & 3.0000 & 3.0000
\end{tabular}

If we think of the \(i\) th point along from the left and the \(j\) th point up from the bottom of the grid) as corresponding to the \((i, j)\) th entry in a matrix, then ( \(\mathrm{X}(\mathrm{i}, \mathrm{j})\),
\(Y(i, j))\) are the coordinates of the point. We then need to evaluate the function \(f\) using X and Y in place of \(x\) and \(y\), respectively.

Example 22.1 Plot the surface defined by the function
\[
f(x, y)=(x-3)^{2}-(y-2)^{2}
\]
for \(2 \leq x \leq 4\) and \(1 \leq y \leq 3\).
```

>> [X,Y] = meshgrid(2:.2:4, 1:.2:3);
>> Z = (X-3).^2-(Y-2).^2;
>> mesh(X,Y,Z)
>> title('Saddle'), xlabel('x'),ylabel('y')

```


Figure 6: Plot of Saddle function.

Example 22.2 Plot the surface defined by the function
\[
f=-x y e^{-2\left(x^{2}+y^{2}\right)}
\]
on the domain \(-2 \leq x \leq 2,-2 \leq y \leq 2\). Find the values and locations of the maxima and minima of the function.
```

>> [X,Y] = meshgrid(-2:.1:2,-2:.2:2);
>> f = -X.*Y.*exp(-2*(X.^2+Y.^2));
>> mesh(X,Y,f), xlabel('X'), ylabel('Y'), grid
>> contour(X,Y,f)
>> xlabel('x'), ylabel('y'), grid, hold on

```

To locate the maxima of the " f " values on the grid:
```

> fmax = max(max(f))
fmax =
0.0886
>> kmax = find(f==fmax)
kmax =
323
539
>> Pos = [X(kmax), Y(kmax)]
Pos =
-0.5000 0.6000
0.5000 -0.6000
>> plot(X(kmax),Y(kmax),'*')
>> text(X(kmax),Y(kmax),' Maximum')

```


Figure 7: "mesh" and "contour" plots.


Figure 8: contour plot showing maxima.

\section*{23 Timing}

Matlab allows the timing of sections of code by providing the functions tic and toc. tic switches on a stopwatch while toc stops it and returns the CPU time (Central Processor Unit) in seconds. The timings will vary depending on the model of computer being used and its current load.
```

>> tic,for j=1:1000,x = pi*R(3);end,toc
elapsed_time = 0.5110
>> tic,for j=1:1000,x=pi*R(3);end,toc
elapsed_time = 0.5017

```
>> tic,for \(j=1: 1000, x=R(3) / p i ;\) end, toc
elapsed_time \(=0.5203\)
>> tic,for \(j=1: 1000, x=p i+R(3)\);end, toc
elapsed_time = 0.5221
>> tic,for \(j=1: 1000, x=p i-R(3)\);end, toc
elapsed_time \(=0.5154\)
>> tic,for \(j=1: 1000, x=p i \wedge R(3)\);end, toc
elapsed_time \(=0.6236\)

\section*{24 On-line Documentation}

In addition to the on-line help facility, there is a hypertext browsing system giving details of (most) commands and some examples. This is accessed by
```

>> doc

```
which brings up the Netscape document previewer (and allows for "surfing the internet superhighway" - the World Wide Web (WWW). It is connected to a worldwide system which, given the appropriate addresses, will provide information on almost any topic).
Words that are underlined in the browser may be clicked on with LB and lead to either a further subindex or a help page.
Scroll down the page shown and click on general which will yake you to "General Purpose Commands"; click on clear. This will describe how you can clear a variable's value from memory.
You may then either click the "Table of Contents" which takes you back to the start, "Index" or the Back button at the lower left corner of the window which will take you back to the previous screen.
To access other "home pages", click on Open at the bottom of the window and, in the "box" that will open up, type
http://www.mcs.dundee.ac.uk
or
http://www.mcs.dundee.ac.uk/~dfg/homepage.html

\section*{25 Demos}

Demonstrations are valuable since they give an indication of Matlabs capabilities.
>> demo
Warning: this will clear the values of all current variables. Click on Continue, then Matlab/Visit,

Visualization/Select, XY plots, etc.

\section*{26 Command Summary}

The command

\section*{>> help}
will give a list of categories for which help is available (e.g. matlab/general covers the topics listed in Table 2.

Further information regarding the commands listed in this section may then be obtained by using:
>> help topic
try, for example,
>> help help
\begin{tabular}{|ll|}
\hline abs & Absolute value \\
sqrt & Square root function \\
sign & Signum function \\
conj & Conjugate of a complex number \\
imag & Imaginary part of a complex \\
& number \\
real & Real part of a complex number \\
angle & Phase angle of a complex number \\
\hline cos & Cosine function \\
sin & Sine function \\
tan & Tangent function \\
exp & Exponential function \\
log & Natural logarithm \\
log10 & Logarithm base 10 \\
cosh & Hyperbolic cosine function \\
sinh & Hyperbolic sine function \\
tanh & Hyperbolic tangent function \\
acos & Inverse cosine \\
acosh & Inverse hyperbolic cosine \\
asin & Inverse sine \\
asinh & Inverse hyperbolic sine \\
atan & Inverse tan \\
atan2 & Two-argument form of inverse \\
atanh & tan \\
\hline Inverse hyperbolic tan \\
round & Round to nearest integer \\
floor & Round towards minus infinity \\
fix & Round towards zero \\
ceil & Round towards plus infinity \\
rem & Remainder after division \\
\hline &
\end{tabular}

Table 1: Elementary Functions
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Managing commands and functions.} \\
\hline \begin{tabular}{l}
help \\
doc \\
what \\
type \\
lookfor \\
which \\
demo
\end{tabular} & \begin{tabular}{l}
On-line documentation. \\
Load hypertext documentation. \\
Directory listing of M-, MATand MEX-files. \\
List M-file. \\
Keyword search through the HELP entries. \\
Locate functions and files. \\
Run demos.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Managing variables and the workspace.} \\
\hline \[
\begin{aligned}
& \hline \text { who } \\
& \text { whos } \\
& \text { load } \\
& \text { save } \\
& \text { clear } \\
& \text { size } \\
& \text { length } \\
& \text { disp } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
List current variables. \\
List current variables, long form. \\
Retrieve variables from disk. \\
Save workspace variables to disk. \\
Clear variables and functions \\
from memory. \\
Size of matrix. \\
Length of vector. \\
Display matrix or text.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Working with files and the operating system.} \\
\hline cd & Change current working
directory. \\
\hline dir & Directory listing. \\
\hline delete ! & Execute operating system command. \\
\hline \begin{tabular}{l}
unix \\
diary
\end{tabular} & \begin{tabular}{l}
Execute operating system command \& return result. \\
Save text of MATLAB session.
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Controlling the command window.} \\
\hline cedit & Set command line edit/recall facility parameters. \\
\hline clc & Clear command window. \\
\hline home & Send cursor home \\
\hline format echo & \begin{tabular}{l}
Set output format. \\
Echo commands inside script files.
\end{tabular} \\
\hline more & Control paged output in command window. \\
\hline \multicolumn{2}{|r|}{Quitting from MATLAB.} \\
\hline quit & Terminate MATLAB. \\
\hline
\end{tabular}

Table 2: General purpose commands.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Matrix analysis.} \\
\hline cond & Matrix condition num \\
\hline nor & Matrix or vector norm \\
\hline rcond & LINPACK reciprocal condition estimator. \\
\hline rank & Number of linearly independent rows or columns. \\
\hline det & Determinan \\
\hline trace & Sum of diagonal elements. \\
\hline null & Null space. \\
\hline or & Orthogonalization. \\
\hline rref & Reduced row echelon form. \\
\hline \multicolumn{2}{|r|}{Linear equations.} \\
\hline \ and / & Linear equation solution; use "help slash". \\
\hline chol & Cholesky factorization. \\
\hline lu & Factors from Gaussian
elimination. \\
\hline inv & Matrix inverse. \\
\hline qr & Orthogonal- triangular decomposition. \\
\hline qrde & Delete a column from the QR factorization. \\
\hline qrinsert & Insert a column in the QR factorization. \\
\hline nn & Non-negative least- squares. \\
\hline pinv & Pseudoinverse. \\
\hline lscov & Least squares in the presence of known covariance. \\
\hline \multicolumn{2}{|r|}{Eigenvalues and singular values.} \\
\hline ei & Eigenvalues and eigenvecto \\
\hline poly & Characteristic polynomia \\
\hline polyeig & Polynomial eigenvalue problem. \\
\hline hess & Hessenberg form. \\
\hline qz & Generalized eigenvalues. \\
\hline rsf2csf & Real block diagonal form to complex diagonal form. \\
\hline cdf 2 rdf & Complex diagonal form to real block diagonal form. \\
\hline sc & Schur decomposition. \\
\hline balance & Diagonal scaling to improve eigenvalue accuracy. \\
\hline svd & Singular value decomposition. \\
\hline \multicolumn{2}{|r|}{Matrix functions.} \\
\hline exp & Matrix exponential. \\
\hline expm1 & M- file implementation of expm. \\
\hline expm2 & Matrix exponential via Taylor series. \\
\hline expm3 & Matrix exponential via eigenvalues and eigenvectors. \\
\hline logm & Matrix logarithm. \\
\hline sqrim & Matrix square root. \\
\hline funm & Evaluate general matrix function. \\
\hline
\end{tabular}

Table 3: Matrix functions-numerical linear algebra.
\begin{tabular}{|ll|}
\hline & \\
\hline figure & Graphics \& plotting. \\
clf & Create Figure (graph window). \\
close & Clear current figure. \\
subplot & Close figure. \\
axis & Control axes in tiled positions. \\
& appearance. \\
hold & Hold current graph. \\
figure & Create figure window. \\
text & Create text. \\
print & Save graph to file. \\
plot & Linear plot. \\
loglog & Log-log scale plot. \\
semilogx & Semi-log scale plot. \\
semilogy & Semi-log scale plot. \\
\hline & Specialized X-Y graphs. \\
\hline polar & Polar coordinate plot. \\
bar & Bar graph. \\
stem & Discrete sequence or "stem" plot. \\
stairs & Stairstep plot. \\
errorbar & Error bar plot. \\
hist & Histogram plot. \\
rose & Angle histogram plot. \\
compass & Compass plot. \\
feather & Feather plot. \\
fplot & Plot function. \\
comet & Comet-like trajectory. \\
\hline & Graph annotation. \\
\hline title & Graph title. \\
zlabel & X-axis label. \\
gtext & Mouse placement of text. \\
grid & Grid lines. \\
ylabel & Y-axis label. \\
text & Text annotation. \\
gtext & Mouse placement of text. \\
grid & Grid lines. \\
contour & Contour plot. \\
mesh & 3-D mesh surface. \\
surf & 3-D shaded surface. \\
waterfall & Waterfall plot. \\
view & 3-D \\
& Specification. \\
\hline & \\
\hline
\end{tabular}

Table 4: Graphics \& plot commands.

\section*{Index}
\(<, 18,20\)
\(<=, 18,20\)
\(==, 18,20\)
\(>, 18,20\)
\(>=, 18,20\)
\%, 9, 20
', 5
.', 5
.*, 10
./, 11
\(.^{\wedge}, 11\)
:, 4, 5, 15
;, 3
abs, 26
accelerators
keyboard, 8
and, 18
angle, 26
ans, 3
array, 12
axes, 8,12
axis, 8
auto, 8
normal, 8
square, 8
browser, 26
ceil, 26
colon notation, 4,15
column vectors, 5
comment (\%), 9, 20
complex
conjugate transpose, 5
numbers, 5
complex numbers, 3
components of a vector, 4
conj, 26
contour, 25
copying output, 8
cos, 26
CPU, 25
cursor keys, 8
demo, 26
diag, 14
diary, 5
dice, 23
divide
dot, 11
documentation, 26
dot
divide ./, 11
power . \({ }^{\text {, }, 11}\)
product .*, 10,15
echo, 9
elementary functions, 3
eye, 13
false, 18
Fibonnaci, 17, 21
file
function, 20
script, 9
find, 23,24
fix, 26
floor, 26
floor, 23
for
loop, 17
format, 2
long, 11
function m -files, 20
functions elementary, 3
trigonometric, 3
graphs, see plotting
grid, 6, 12, 24
hard copy, 7
help, 2, 20
hold, 7, 12
home page, 26
if statement, 19
imag, 26
keyboard accelerators, 8
labels for plots, 6
legend, 7
length of a vector, 4, 5, 9
line styles, 6
logical conditions, 18
loops, 17
while, 19
m-files, 9,20
matrix, 12
building, 14
diagonal, 14
identity, 13
indexing, 15
orthogonal, 23
size, 13
special, 13
spy, 14
square, 13
symmetric, 13
zeros, 13
matrix products, 16
matrix-vector products, 15
\(\max , 23,25\)
mesh, 25
meshgrid, 24
min, 23, 25
multi-plots, 7

Netscape, 26
norm of a vector, 10
not, 18,20
numbers, 2
complex, 3
format, 2
random, 23
rounding, 22
ones, 13
or, 18
plot, 17
plotting, 6, 11, 24, 26
labels, 6
line styles, 6
surfaces, 24
title, 6
power
dot, 11
priorities in arithmetic, 2
product
dot, 10,15
scalar, 16
quit, 2
rand, 23
random numbers, 23
real, 26
rem, 26
round, 26
rounding error, 4
rounding numbers, 22
scalar product, 9, 16
script files, 9
semi-colon, 3, 12
sign, 26
sin, 26
size, 13
sort, 4
spy, 14
sqrt, 26
strings, 6
subplot, 7,17
sum, 17, 22
surfing the internet highway, 26
timing, 25
title for plots, 6
toc, 25
transposing, 5
trigonometric functions, 3
true, 18
type (list contents of m-file), 9
variable names, 3
vector
components, 4
vectors
column, 5
row, 4
what, 9
while loops, 19
whos, 5
WWW, 26
xlabel, 6,25
xterm, 2
ylabel, 6
zeros, 13
zoom, 7```

