MATLAB for Windows

 JumpStart Computing and Information Technology

Introduction

MATLAB (short for "MATrix LABoratory") is a highperformance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment. MATLAB's strength is the ease with which it manipulates rectangular arrays of numbers (matrices), relieving the user of explicit dimensioning details.

Start and Quit MATLAB

To start MATLAB, click on Start button, then select Programs,
Matlab, and then MATLAB. A new window opens. MATLAB's command line prompt is a pair of greater-than symbols, >>.
To end your MATLAB session, type exit or quit or choose Exit MATLAB from the File menu.

File Conventions

$M A T L A B$ expects certain file extensions when some commands are executed. Here is a list of file extensions:

$$
\begin{array}{ll}
\text { File Contents } & \text { Extension } \\
\text { MATLAB script file } & . m \\
\text { MATLAB binary file } & . m a t
\end{array}
$$

MATLAB reads and executes commands from standard input, as well as from ASCII script files with.m extension (called M-files, which can be created with MATLAB built-in editor or Notebook). To execute the commands residing in a file named myproject.m, simply type the file name without the .m extension at a MATLAB prompt:

```
myproject
```

MATLAB executes each command from myproject until complete, then returning you to a prompt. Comments can be used to document your work; MATLAB treats any text following a \% sign as a comment.

Help in MATLAB

MATLAB provides an effective online help facility, available by typing help. MATLAB responds by displaying a list of help topics, along with a brief description of each topic. You can get specific help by typing help with a topic name. For example, typing help graph3d lists the commands that relate to three dimensional graphics; typing help surf provides detailed help on MATLAB's surface plotting command surf.

Online help is also available from the menu bar located at the top of the MATLAB window.

To get a quick introduction to MATLAB's features, run the demo program by typing demo.

MATLAB Command Syntax

MATLAB is case sensitive. All built-in commands are in lower case. A command normally terminates with a carriage return. Including a semicolon (;) at the end of a command suppresses MATLAB's echoing to the terminal. Typing b=2*a; stores the result of $\mathbf{2} \boldsymbol{*} \boldsymbol{a}$ in variable \boldsymbol{b}, but does not display the result (This is useful when dealing with large sets of numbers).

Matrices

MATLAB works with essentially one kind of object: a matrix of numbers (which could include complex elements). Scalars are 1-by-1 matrices and vectors are 1-by-n or n-by-1 matrices.

When entering a matrix, separate columns by space or commas and rows by semicolons. For example, typing

$$
A=\left[\begin{array}{llll}
1 & 2 ; & 3 & 4
\end{array}\right]
$$

results in

$$
\begin{array}{rr}
A= & \\
1 & 2 \\
3 & 4
\end{array}
$$

$M A T L A B$ stores the above 2-by-2 matrix into the variable A for later use. To retrieve a variable, simply type its name (e.g., \boldsymbol{A}).

Matrix and Array Operations

Matrix operations are fundamental to MATLAB and are based on principles of linear algebra. Matrix multiplication, division, power and transpose are denoted by symbols $\star, /, \wedge$ and \cdot.

Array operations refer to element-by-element arithmetic operations, rather than the usual linear algebraic operations. Array operations are denoted by preceding an operator with a period (.) such as . *, ./ and .^. For addition and subtraction, array and matrix operations are same.

See the Examples section for a comparison of matrix and array operations.

The Colon (:) Notation

The colon, : is an important notation. It can be used to generate vectors and access submatrices. For example

$$
x=0: p i / 4: p i
$$

results in

$$
\begin{array}{lllll}
x= \\
& 0 & 0.7854 & 1.5708 & 2.3562
\end{array} 3.1416
$$

Combination of vectors can generate matrices. For example

```
y=exp(-x).*sin(x);
z=[x;y]
```


Published by: Academic Services, Computing and Information Technology State University of New York at Buffalo

JumpStart is a series to help users get started with language compilers, application and utilities with minimal startup time.

For additional help contact the CIT Help Desk, 216 Computing Center, at (716) 645-3542 or send email to cit-helpdesk@buffalo.edu.
produces:

```
z=
    0 0.7854 1.5708 2.3562 3.1416
    0 0.3224 0.2079 0.0670 0.0000
```

The colon notation allows you to access any portion of a matrix. For instance

$$
z(:, 2: 5)
$$

specifies the 2-by-4 submatrix that consists of the last four elements in all rows. Please note that using the colon alone denotes all of a corresponding row or column.

Editor/Debugger

MATLAB's built-in Editor/Bebugger can be used to edit and debug command/script files. To access it type

```
edit
```


Saving your work

Choose Save Workspace As... from the File menu to save your work into a .mat file. Files with a .mat extension are in binary format and are not human readable. To open an existing .mat, select load Workspace from the File menu.

Printing

Select Print from the File menu to print a copy of your MATLAB session.

Examples

MATLAB's command language is expressive, extensible, and easy to use; using MATLAB interactively by entering commands at its >> prompt is an effective way to learn.
The following commands help illustrate some of MATLAB's features:

Example	Description
clear	Clear all variables from memory.
$a=\left[\begin{array}{llll}1 & 2 & 4\end{array}\right]$	Create a simple 2×2 matrix.
$b=i n v(a)$	Invert matrix a and store it as variable b.
$c=a * b$	Matrix multiplication of \boldsymbol{a} and \boldsymbol{b}.
$c=a . * b$	Array operation (note the decimal point in the operator!).
$c(:, 2)$	The 2 nd column of matrix \boldsymbol{c}.
c (2, :)	The 2nd row of matrix c.
who	List the active variables now.

$\mathbf{x}=0: \mathrm{pi} / 30:$ Create a row vector whose elements 4*pi range from 0 to 4 pi , in increments of $\mathrm{pi} /$ 30.
$\mathbf{x}=\mathbf{x}^{\prime} \quad$ Take the transpose of \mathbf{x}, and store the resulting column vector as \mathbf{x}.
$\boldsymbol{y}=\exp (-0.3 *$ Create column vector \boldsymbol{y}. as a function of
$\mathbf{x}) . \boldsymbol{*} \sin (\mathbf{x}) \quad$ column vector \mathbf{x} (note the . * operator!).
$\operatorname{plot}(\mathbf{x}, \boldsymbol{y}) \quad$ Plot the column vectors \boldsymbol{x} and \boldsymbol{y}.
title('Decaying Create a plot title.
Sinusoid')
xlabel ('Time Label the x-axis.
(sec)')
ylabel ('Positio Label the y-axis.
n (in)')
print -dps decay Create a PostScript plot file decay.ps.
$\boldsymbol{c l f} \quad$ Clear the displayed figure.
$[\boldsymbol{x}, \boldsymbol{y}]=\quad$ Generate matrices x and y to support 3-D
meshgrid(-1: surface plotting over the provided
0.05 : 1 , -1: intervals.
0.1 : 1)
$z=\sin (5 * x . *$ Create matrix z , from x and y .
y);
$\boldsymbol{\operatorname { s u r f }}(\mathbf{x}, \boldsymbol{y}, \boldsymbol{z}) \quad$ Plot the surface $\mathrm{z}=\sin (5 \mathrm{xy})$.
view ([20 60]) Change the view and replot (azimuth \& elevation).

Documentation

For a complete description of MATLAB, refer to MATLAB User's Guide
published by The MathWorks, Inc.
To access online manuals, click on Help and then Help Desk.

